система имеет бесконечно много решений если мы имеем тождество, не зависящее от переменных:
для этого нужно, чтобы коэфф. при х, у и правая часть совпадали с точностью до множителя. сейчас поясню:
в первом уравнении при х стоит 4, во втором 20, 20 = 4*5
в правой части первого уравнения стоит 3, во втором 15, 15 = 3*5
значит -а*5=10 => а=-2
при этом а, если мы домножим первое уравнение на 5 и вычтем из 2, получим 0 = 0 - это тождество верное при любых х и у, то есть решений бесконечно много
Определить коэффициент а и найти решение системы уравнений графически:
ax + 3y = 11
5x +2y = 12, если известно что первое уравнение этой системы обращается в верное равенство при x=16 и y= -7.
1) Вычисляем а. Для этого в первое уравнение подставляем заданные значения х и у:
ax + 3y = 11
а*16+3*(-7)=11
16а-21=11
16а=11+21
16а=32
а=2
Решим графически систему уравнений:
2x + 3y = 11
5x +2y = 12
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
2x + 3y = 11 5x +2y = 12
3у=11-2х 2у=12-5х
у=(11-2х)/3 у=(12-5х)/2
Таблицы:
х -2 1 4 х -2 0 2
у 5 3 1 у 11 6 1
Согласно графика, координаты точки пересечения прямых (≈1,3; ≈2,8)
-2
Объяснение:
система имеет бесконечно много решений если мы имеем тождество, не зависящее от переменных:
для этого нужно, чтобы коэфф. при х, у и правая часть совпадали с точностью до множителя. сейчас поясню:
в первом уравнении при х стоит 4, во втором 20, 20 = 4*5
в правой части первого уравнения стоит 3, во втором 15, 15 = 3*5
значит -а*5=10 => а=-2
при этом а, если мы домножим первое уравнение на 5 и вычтем из 2, получим 0 = 0 - это тождество верное при любых х и у, то есть решений бесконечно много
Координаты точки пересечения прямых (≈1,3; ≈2,8)
Решение системы уравнений (14/11; 2 и 27/33)
Объяснение:
Определить коэффициент а и найти решение системы уравнений графически:
ax + 3y = 11
5x +2y = 12, если известно что первое уравнение этой системы обращается в верное равенство при x=16 и y= -7.
1) Вычисляем а. Для этого в первое уравнение подставляем заданные значения х и у:
ax + 3y = 11
а*16+3*(-7)=11
16а-21=11
16а=11+21
16а=32
а=2
Решим графически систему уравнений:
2x + 3y = 11
5x +2y = 12
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
2x + 3y = 11 5x +2y = 12
3у=11-2х 2у=12-5х
у=(11-2х)/3 у=(12-5х)/2
Таблицы:
х -2 1 4 х -2 0 2
у 5 3 1 у 11 6 1
Согласно графика, координаты точки пересечения прямых (≈1,3; ≈2,8)
Решение системы уравнений (14/11; 2 и 27/33)