У меня получилось 4 таких числа - 1236, 1248, 1296 и 1326. Это навскидку, может и еще есть. Очевидно, первая цифра 1. Если все цифры различны, то вторая 2 или 3. Если вторая цифра 2, то третья не меньше 3, а последняя четная. Если третья 3, то число делится на 2 и 3, то есть на 6. Последняя 6. 1236 делится на 2,3 и 6. Если третья 4, то последняя 8. 1248 делится на 2, 4 и 8. Третья не может быть 5,6,7,и 8, по разным причинам. Если третья 9, то последняя 6, 1296 делится на 2, 9 и 6. Если вторая 3, то получается 1326 - четное и делится на 6.
Попробую решить) Итак, при х = -4,5 неравенство x^2+9x+a>0 - не верно. Значит, при х = -4,5 верно следующее неравенство: x^2+9x+a<0 ( поменяли знак неравенства на противоположный). Подставим "-4,5" вместо икса и получим: (-4,5)^2+9*(-4,5)+a<0 20,25-40,5+a<0 -20,25+a<0 a<20,25 - при этих "a" неравенство x^2+9x+a<0 - ВЕРНО,а неравенство x^2+9x+a>0 - НЕ ВЕРНО. И верным оно будет при a>20,25 ( поменяли знак неравенства на противоположный). Проверим: подставим в формулу неравенства любое значение "a", которое больше 20,25( например,21). Далее,чтобы решить неравенство, нам надо найти корни уравнения x^2+9x+21=0, но т.к. дискриминант <0, то решением неравенства x^2+9x+21>0 будут все иксы. ответ: a> 20,25.
Это навскидку, может и еще есть. Очевидно, первая цифра 1.
Если все цифры различны, то вторая 2 или 3.
Если вторая цифра 2, то третья не меньше 3, а последняя четная.
Если третья 3, то число делится на 2 и 3, то есть на 6. Последняя 6.
1236 делится на 2,3 и 6.
Если третья 4, то последняя 8. 1248 делится на 2, 4 и 8.
Третья не может быть 5,6,7,и 8, по разным причинам.
Если третья 9, то последняя 6, 1296 делится на 2, 9 и 6.
Если вторая 3, то получается 1326 - четное и делится на 6.
Итак, при х = -4,5 неравенство x^2+9x+a>0 - не верно.
Значит, при х = -4,5 верно следующее неравенство:
x^2+9x+a<0 ( поменяли знак неравенства на противоположный).
Подставим "-4,5" вместо икса и получим:
(-4,5)^2+9*(-4,5)+a<0
20,25-40,5+a<0
-20,25+a<0
a<20,25 - при этих "a" неравенство x^2+9x+a<0 - ВЕРНО,а неравенство x^2+9x+a>0 - НЕ ВЕРНО. И верным оно будет при a>20,25 ( поменяли знак неравенства на противоположный).
Проверим: подставим в формулу неравенства любое значение "a", которое больше 20,25( например,21). Далее,чтобы решить неравенство, нам надо найти корни уравнения x^2+9x+21=0, но т.к. дискриминант <0, то решением неравенства x^2+9x+21>0 будут все иксы.
ответ: a> 20,25.