Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде нужно преобразовать уравнения в более удобный для вычислений вид:
-x+3y=3 x-y=1
3у=3+х -у=1-х
у=(3+х)/3 у=х-1
Таблицы:
х -3 0 3 х -1 0 1
у 0 1 2 у -2 -1 0
Согласно графика, координаты точки пересечения графиков данных уравнений (3; 2)
Решение системы уравнений х=3
у=2
2)x+y=0
3x+3y=0
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде нужно преобразовать уравнения в более удобный для вычислений вид:
x+y=0 3x+3y=0
у= -х 3у= -3х
у= -3х/3
у= -х
Таблицы:
х -1 0 1 х -1 0 1
у 1 0 -1 у 1 0 -1
Графики сливаются, система имеет бесконечное множество решений.
3)x-y=2
2x+5=2y
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде нужно преобразовать уравнения в более удобный для вычислений вид:
x-y=2 2x+5=2y
-у=2-х -2у= -2х-5
у=х-2 2у=2х+5
у=(2х+5)/2
Таблицы:
х -1 0 1 х -1 0 1
у -3 -2 -1 у 1,5 2,5 3,5
Прямые параллельны, система уравнений не имеет решений.
В подобных задачах обычно используется теорема Пифагора и синусы, косинусы, тангенсы острых углов.
Теорема Пифагора может пригодится, если известно две стороны из трёх. a² = b² + c² a - гипотенуза; b, c - катеты.
Теперь остановимся на острых углах.
1) Один острый угол равен 45°. В таких задачах прямоугольный треугольник ещё и равнобедренный ⇒ равны катеты.
2) Один из острых углов равен 30° (60°). Есть одна теорема: напротив угла в 30° лежит катет в два раза меньше гипотенузы. Для большей наглядности возьмём треугольник ABC (∠C - прямой). Пусть ∠А = 30°, тогда AB (гипотенуза) = 2*BC (катет, напротив 30°)
3) Обычно острые углы в прямоугольном треугольнике либо равны 30°, 45°, 60°, либо даны синусы, косинусы, тангенсы этих углов ( например, tgA = 2) В таких случаях надо выражать тангенс, синус или косинус через стороны.
Например в треугольнике ABC (∠C - прямой) BC = 14, а tgA = 2. Нужно найти AC. Тангенс - отношение противолежащего катета к прилежащему, то есть tgA = BC : AC, подставив значения, находим AC = 7.
Приведу второй пример. Треугольник ABC (∠C - прямой), ∠A = 30°, AB = 8. Найти BC. Такую задачу можно решить по теореме, указанной выше под цифрой 2, или выразив сторону BC через синус. Синус - отношение противолежащего катета к гипотенузе, то есть sinA = BC : AB. sinA = sin30° = 1/2. Подставив значения, находим BC = 4.
1)Решение системы уравнений х=3
у=2
2)Система имеет бесконечное множество решений.
3)Система уравнений не имеет решений.
Объяснение:
Решите графически систему уравнений:
1) -x+3y=3
x-y=1
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде нужно преобразовать уравнения в более удобный для вычислений вид:
-x+3y=3 x-y=1
3у=3+х -у=1-х
у=(3+х)/3 у=х-1
Таблицы:
х -3 0 3 х -1 0 1
у 0 1 2 у -2 -1 0
Согласно графика, координаты точки пересечения графиков данных уравнений (3; 2)
Решение системы уравнений х=3
у=2
2)x+y=0
3x+3y=0
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде нужно преобразовать уравнения в более удобный для вычислений вид:
x+y=0 3x+3y=0
у= -х 3у= -3х
у= -3х/3
у= -х
Таблицы:
х -1 0 1 х -1 0 1
у 1 0 -1 у 1 0 -1
Графики сливаются, система имеет бесконечное множество решений.
3)x-y=2
2x+5=2y
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде нужно преобразовать уравнения в более удобный для вычислений вид:
x-y=2 2x+5=2y
-у=2-х -2у= -2х-5
у=х-2 2у=2х+5
у=(2х+5)/2
Таблицы:
х -1 0 1 х -1 0 1
у -3 -2 -1 у 1,5 2,5 3,5
Прямые параллельны, система уравнений не имеет решений.
Теорема Пифагора может пригодится, если известно две стороны из трёх.
a² = b² + c²
a - гипотенуза; b, c - катеты.
Теперь остановимся на острых углах.
1) Один острый угол равен 45°. В таких задачах прямоугольный треугольник ещё и равнобедренный ⇒ равны катеты.
2) Один из острых углов равен 30° (60°). Есть одна теорема: напротив угла в 30° лежит катет в два раза меньше гипотенузы. Для большей наглядности возьмём треугольник ABC (∠C - прямой). Пусть ∠А = 30°, тогда AB (гипотенуза) = 2*BC (катет, напротив 30°)
3) Обычно острые углы в прямоугольном треугольнике либо равны 30°, 45°, 60°, либо даны синусы, косинусы, тангенсы этих углов ( например, tgA = 2)
В таких случаях надо выражать тангенс, синус или косинус через стороны.
Например в треугольнике ABC (∠C - прямой) BC = 14, а tgA = 2. Нужно найти AC.
Тангенс - отношение противолежащего катета к прилежащему, то есть tgA = BC : AC, подставив значения, находим AC = 7.
Приведу второй пример. Треугольник ABC (∠C - прямой), ∠A = 30°, AB = 8. Найти BC. Такую задачу можно решить по теореме, указанной выше под цифрой 2, или выразив сторону BC через синус.
Синус - отношение противолежащего катета к гипотенузе, то есть sinA = BC : AB. sinA = sin30° = 1/2. Подставив значения, находим BC = 4.