В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
foximmortal
foximmortal
30.09.2021 19:42 •  Алгебра

Алгебра

1/(n+1) + 1/(n+2) + ... + 1/(2n) > 1/2; при n>=2

Показать ответ
Ответ:
Darya789
Darya789
11.02.2021 23:38

Для 1\leq j \leq n выполнено неравенство \frac{1}{n+j}\geq \frac{1}{2n}, причем равенство возможно в единственном случае: при j=n. Поэтому \frac{1}{n+1}+\frac{1}{n+2}+\dots+ \frac{1}{2n} \frac{1}{2n}\cdot n = \frac{1}{2}.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота