1. Функция многочлен, а значит область определения функции вся вещественная ось.
2. Многочлены будут четными, если содержат только четные степени переменной и наоборот нечетными при нечетных степенях. в нашем случае функция является ни четноой, ни нечетной. Функция непериодическая.
3. Функция не имеет асимптот.
4. Поскольку функция имеет степень 3, то ее график не имеет ни горизонтальных, ни наклонных асимптот.
5. найдем пересечение с осью Оу для этого найдем значене у при х=0
и пересечение с осью Ох для этого решим уравнение
получаем каноническое уравнение
найдем Q
так как Q>0, то по методу Кардано уравнение имеет один действительный корень
6. производная функции будет
найдем интервалы возрастания и убывания
решим неравенство
решим квадртное уравнение
дискриминант будет равен 36
следовательно на интервалах ]-∞;0] и [2;+∞[ функция возрастает, а между ними функция убывает
Чтобы не искать число за числом по калькулятору, будем рассуждать логически:
Попробуем составить уравнение, которое нам.
Нам нужно, чтобы двузначное число делилось на произведение своих цифр. Представим само число как сумму десятков и единиц:
10x + y
А произведение представим просто:
x × y
Теперь уравняем их:
10x + y = x × y
x ≠ 0
y ≠ 0
1. Возьмём x = 1
10 × 1 + y = 1 × y
10 + y = y
Теперь разделим левую часть на правую. Суть этого уравнения состоит в том, что левая часть уравнения должна делиться на правую без остатка. Таким образом мы и найдём все двузначные числа, которые кратны произведению своих цифр.)
Значится:
(10 + y) ÷ y = 10/y + y/y = 10/y + 1
Смотрим. В сумме должно получится ЦЕЛОЕ число. Чтобы оно получилось, надо знать, на что делится десятка без остатка. А делится она на 1, 2 и 5.) Значит, "игрек" будет равен этим числам. первые три числа уже нашли. Это:
11, 12 и 15.
2. Теперь возьмём x = 2
10 × 2 + y = 2 × y
20 + y = 2y
(20 + y) ÷ 2y = 20/2y + y/2y = 10/y + 1/2
Опять же - в сумме должно получится ЦЕЛОЕ число. Значит надо думать, на что поделить десятку, чтобы потом полученное число сложить с дробью 1/2 (0,5) и в конечном счёте получить целое число.
Очевидно, что это цифра "4", т.к. 10 ÷ 4 = 2,5. А 2,5 + 0,5 = 3 - целое число.)
Значит, y = 4. В итоге получаем ещё одно число, кратное произведению своих цифр:
24.
3. Теперь x = 3
10 × 3 + y = 3 × y
30 + y = 3y
(30 + y) ÷ 3y = 30/3y + y/3y = 10/y + 1/3
Те же манипуляции. Ищем, на что дожна делиться десятка, чтобы полученное число прибавить к 1/3 и получить целое число.)
Это цифра "6". y = 6
10/6 = 5/3 = 1 целая и 2/3. 1 целая и 2/3 + 1/3 = 3.
Нашли ещё одно число:
36.
4. x = 4
10 × 4 + y = 4 × y
40 + y = 4y
(40 + y) ÷ 4y = 40/4y + y/4y = 10/y + 1/4
Думаем. Но думать здесь нечего. Единственное число от 1 до 9, на которое можно поделить десятку - это 8. Но если мы поделим:
10/8 = 5/4 = 1 целая и 1/4,
то мы увидим, что, прибавив 1/4 к полученному результату, целое число мы не получим. Здесь не подходит.
Во всех остальных значениях "икс" - 5, 6, 7, 8 и 9 - цифру "игрек" также нельзя найти.
Всё. То, что мы получили - и есть все двузначные числа, которые кратны произведению своих цифр:
1. Функция многочлен, а значит область определения функции вся вещественная ось.
2. Многочлены будут четными, если содержат только четные степени переменной и наоборот нечетными при нечетных степенях. в нашем случае функция является ни четноой, ни нечетной. Функция непериодическая.
3. Функция не имеет асимптот.
4. Поскольку функция имеет степень 3, то ее график не имеет ни горизонтальных, ни наклонных асимптот.
5. найдем пересечение с осью Оу для этого найдем значене у при х=0
и пересечение с осью Ох для этого решим уравнение
получаем каноническое уравнение
найдем Q
так как Q>0, то по методу Кардано уравнение имеет один действительный корень
6. производная функции будет
найдем интервалы возрастания и убывания
решим неравенство
решим квадртное уравнение
дискриминант будет равен 36
следовательно на интервалах ]-∞;0] и [2;+∞[ функция возрастает, а между ними функция убывает
и в итоге строим график
Чтобы не искать число за числом по калькулятору, будем рассуждать логически:
Попробуем составить уравнение, которое нам.
Нам нужно, чтобы двузначное число делилось на произведение своих цифр. Представим само число как сумму десятков и единиц:
10x + y
А произведение представим просто:
x × y
Теперь уравняем их:
10x + y = x × y
x ≠ 0
y ≠ 0
1. Возьмём x = 1
10 × 1 + y = 1 × y
10 + y = y
Теперь разделим левую часть на правую. Суть этого уравнения состоит в том, что левая часть уравнения должна делиться на правую без остатка. Таким образом мы и найдём все двузначные числа, которые кратны произведению своих цифр.)
Значится:
(10 + y) ÷ y = 10/y + y/y = 10/y + 1
Смотрим. В сумме должно получится ЦЕЛОЕ число. Чтобы оно получилось, надо знать, на что делится десятка без остатка. А делится она на 1, 2 и 5.) Значит, "игрек" будет равен этим числам. первые три числа уже нашли. Это:
11, 12 и 15.
2. Теперь возьмём x = 2
10 × 2 + y = 2 × y
20 + y = 2y
(20 + y) ÷ 2y = 20/2y + y/2y = 10/y + 1/2
Опять же - в сумме должно получится ЦЕЛОЕ число. Значит надо думать, на что поделить десятку, чтобы потом полученное число сложить с дробью 1/2 (0,5) и в конечном счёте получить целое число.
Очевидно, что это цифра "4", т.к. 10 ÷ 4 = 2,5. А 2,5 + 0,5 = 3 - целое число.)
Значит, y = 4. В итоге получаем ещё одно число, кратное произведению своих цифр:
24.
3. Теперь x = 3
10 × 3 + y = 3 × y
30 + y = 3y
(30 + y) ÷ 3y = 30/3y + y/3y = 10/y + 1/3
Те же манипуляции. Ищем, на что дожна делиться десятка, чтобы полученное число прибавить к 1/3 и получить целое число.)
Это цифра "6". y = 6
10/6 = 5/3 = 1 целая и 2/3. 1 целая и 2/3 + 1/3 = 3.
Нашли ещё одно число:
36.
4. x = 4
10 × 4 + y = 4 × y
40 + y = 4y
(40 + y) ÷ 4y = 40/4y + y/4y = 10/y + 1/4
Думаем. Но думать здесь нечего. Единственное число от 1 до 9, на которое можно поделить десятку - это 8. Но если мы поделим:
10/8 = 5/4 = 1 целая и 1/4,
то мы увидим, что, прибавив 1/4 к полученному результату, целое число мы не получим. Здесь не подходит.
Во всех остальных значениях "икс" - 5, 6, 7, 8 и 9 - цифру "игрек" также нельзя найти.
Всё. То, что мы получили - и есть все двузначные числа, которые кратны произведению своих цифр:
11, 12, 15, 24 и 36.