Нашей целью является нахождение точки, являющейся пересечением серединного перпендикуляра к отрезку АВ и оси Ох. А(-1;5) и В(7;-3) 1) Находим координату середины отрезка АВ:
2) Находим направленный вектор прямой АВ: s={7-(-1);-3-5} s={8;-8} 3) Находим нормаль к прямой АВ: n={-(-8);8} n={8;8} Сократим координаты на число 8, получим координаты нормали: n={1;1} 4) Составим уравнение серединного перпендикуляра к прямой АВ: (x-3)/1 = (y-1)/1 x-3=y-1 x-y-2=0 5) По условию, искомая точка лежит на оси Ох, значит ордината этой токи равна нулю. Ищем абсциссу: х-0-2=0 х=2 Итак, точка (2;0) - искомая
Vпешех * t = 48 Vвелосип * (t-8) = 48
Vп = 48/t Vв = 48/(t-8)
3*48/t - путь, который пешеход
3*48/(t-8) - путь, который проехал велосипедист
3*48/t + 3*48/(t-8) = 48
144/t + 144/(t-8) - 48 = 0
144(t-8) + 144*t - 48(t²-8t) = 0
t²-8t
144t - 1152 + 144t - 48t² + 384t = 0
-48t² + 672t - 1152 = 0
t² - 14t + 24 = 0
D = b²-4ac = (-14)² - 4*1*24 = 196 - 96 = 100
t = (-b+√D)/2a = (14+10) / 2 = 12 часов (за 12 часов пешеход пройдёт 48 км)
t-8 = 12-8 = 4 часа (за 4 часа велосипедист проедет 48 км)
Vпеш = 48/t = 48/12 = 4 км/ч - скорость пешехода
Vвел = 48/t-8) = 48/4 = 12 км/ч - скорость велосипедиста
А(-1;5) и В(7;-3)
1) Находим координату середины отрезка АВ:
2) Находим направленный вектор прямой АВ:
s={7-(-1);-3-5}
s={8;-8}
3) Находим нормаль к прямой АВ:
n={-(-8);8}
n={8;8}
Сократим координаты на число 8, получим координаты нормали:
n={1;1}
4) Составим уравнение серединного перпендикуляра к прямой АВ:
(x-3)/1 = (y-1)/1
x-3=y-1
x-y-2=0
5) По условию, искомая точка лежит на оси Ох, значит ордината этой
токи равна нулю. Ищем абсциссу:
х-0-2=0
х=2
Итак, точка (2;0) - искомая