Решением системы уравнения является точки пересечений графиков, следовательно нам нужно найти Х и Y, потому что точка пересечения состоит их X и Y.Найдем X, в первом пункте где мы выражали туда подставляем Y.
x=3+10y x=3+10*(-0,2)=1
Точки принято записывать на первом месте пишем переменную X, а на втором переменную Y.
дана система:
2x+5y=1
x-10y=3
1. Выражаем
Видно что во втором уравнении имеется переменная X с коэффициентом 1,отсюда получается что легче всего выразить переменную Х из второго уравнения.
x=3+10y
2. После того как выразили подставляем в первое уравнение 3+10y вместо переменной Х.
2(3+10y)+5y=1
3. Решаем полученное уравнение с одной переменной.
2(3+10y)+5y=1 (раскрываем скобки )
6+20y+5y=1
25y=1-6
25y=-5
y=-5:25
y=-0,2
Решением системы уравнения является точки пересечений графиков, следовательно нам нужно найти Х и Y, потому что точка пересечения состоит их X и Y.Найдем X, в первом пункте где мы выражали туда подставляем Y.
x=3+10y
x=3+10*(-0,2)=1
Точки принято записывать на первом месте пишем переменную X, а на втором переменную Y.
ответ: (1; -0,2)
cos2x cosx - sin2x sinx +2cosx=0
(cos²x-sin²x)cosx - 2sinx cosx sinx +2cosx=0
(cos²x-sin²x)cosx - 2sin²x cosx + 2cosx=0
cosx (cos²x-sin²x - 2sin²x +2)=0
cosx (cos²x-3sin²x+2)=0
cosx=0 cos²x-3sin²x+2=0
x=π + πn cos²x-3(1-cos²x)+2=0
2 cos²x - 3 +3cos²x+2=0
4cos²x-1=0
(2cosx-1)(2cosx+1)=0
2cosx-1=0 2cosx+1=0
2cosx=1 2cosx=-1
cosx= 1 cosx= -1
2 2
x=+ arccos 1 +2πn x=+ arccos(-1 )+2πn
2 2
x=+ π + 2πn x=+ (π - π)+2πn
3 3
x=+ 2π +2πn
3
ответ: х= π +πn
2
x= + π +2πn
3
x=+ 2π +2πn
3