Используем формулу n-го члена арифметической прогресии a (n)=a1+d(n-1) В конце работы грузовик перевозит 270 тонн, а работа была выполнена за 15 дней, значит а15=270 (а15 читается а пятнадцатая 15 пишется внизу) , В первый день он отвёз 4 т, значит а1=4, всего он работал 15 дней n=15, Найдём число тонн, на которое ежедневно увеличивались перевозки.это d -разность арифметической прогресии.
270=4+d(15-1) 270-4=14d d=19
Найдём теперь, сколько грузовик отвёз на 6-ой день, т.е. найдём а6 а6=4+19(6-1)=4+95=99 т.
1) y = 4 cos x + 27 x/π + 3; y'(x) = - 4 sin x + 27/π; y;(x) = 0; - 4 sin x + 27/π = 0; - 4 sin x = - 27/π; sin x = 27/4π; π≈3,14; 27/4π≈27/12,48 >1; -1 ≤ sin x ≤ 1; нет решений, то есть нет стационарных точек. Проверим значения функции на концах заданного интервала. f(- 2π/3) = 4 cos(-2π/3 ) + 27 (-2π/3) / π + 3= =4*(-1/2) - 18 + 3= - 17. f(0) = 4 cos 0 - 27*0/π + 3 = 4*1 - 0 + 3 = 7; f(0) > f(- 2π/3); ответ : f(наим.)=f(- 2π/3)= - 17. 2) y = 5 sin x - 36x /π + 6; y'(x)= 5 cos x - 36/π; y;(x) = 0; 5 cos x - 36/π=0; 5 cos x = 36/π; cos x = 36 / 5π≈2,2; - 1 ≤ cos x ≤ 1; нет решений, то есть нет стационарных точек. Проверим значения функции на концах заданного интервала. f(- 5π/6) = 5*sin(- 5π/6) - 36(-5π/6)+6 =5*(-1/2)+ 30+6= =33,5. f(0) = 5 sin 0 - 36*0/π + 6 = 5*0 - 0 + 6 = 6. f(0) < f(- 5π/6) ; f(наиб.) = f(- 5π/6)= 33,5
a (n)=a1+d(n-1)
В конце работы грузовик перевозит 270 тонн, а работа была выполнена за 15 дней, значит а15=270 (а15 читается а пятнадцатая 15 пишется внизу) , В первый день он отвёз 4 т, значит а1=4, всего он работал 15 дней n=15, Найдём число тонн, на которое ежедневно увеличивались перевозки.это d -разность арифметической прогресии.
270=4+d(15-1)
270-4=14d
d=19
Найдём теперь, сколько грузовик отвёз на 6-ой день, т.е. найдём а6
а6=4+19(6-1)=4+95=99 т.
y'(x) = - 4 sin x + 27/π;
y;(x) = 0;
- 4 sin x + 27/π = 0;
- 4 sin x = - 27/π;
sin x = 27/4π;
π≈3,14;
27/4π≈27/12,48 >1;
-1 ≤ sin x ≤ 1; нет решений, то есть нет стационарных точек.
Проверим значения функции на концах заданного интервала.
f(- 2π/3) = 4 cos(-2π/3 ) + 27 (-2π/3) / π + 3=
=4*(-1/2) - 18 + 3= - 17.
f(0) = 4 cos 0 - 27*0/π + 3 = 4*1 - 0 + 3 = 7;
f(0) > f(- 2π/3);
ответ : f(наим.)=f(- 2π/3)= - 17.
2) y = 5 sin x - 36x /π + 6;
y'(x)= 5 cos x - 36/π;
y;(x) = 0;
5 cos x - 36/π=0;
5 cos x = 36/π;
cos x = 36 / 5π≈2,2;
- 1 ≤ cos x ≤ 1; нет решений, то есть нет стационарных точек.
Проверим значения функции на концах заданного интервала.
f(- 5π/6) = 5*sin(- 5π/6) - 36(-5π/6)+6 =5*(-1/2)+ 30+6=
=33,5.
f(0) = 5 sin 0 - 36*0/π + 6 = 5*0 - 0 + 6 = 6.
f(0) < f(- 5π/6) ;
f(наиб.) = f(- 5π/6)= 33,5