Перед нами квадратное неравенство 2х² + х -6 ≤ 0.
Для начала решим квадратное уравнение 2х² + х -6
Решаем квадратное уравнение
x 1 = -2x 2 = 1.5
Интервалы знакопостоянстваОпределяем интервалы, на которых функция не меняет знак - интервалы знакопостоянства. ( -∞ , -2) ( -2 , 1.5) ( 1.5 , +∞) Определяем, какой знак принимает функция на каждом интервале. ( -∞ , -2) плюс ( -2 , 1.5) минус ( 1.5 , +∞) плюс Записываем интервалы, удовлетворяющие неравенству. ( -2 , 1.5)Проверяем входят ли концы интервалов в ответ. [-2 , 1.5] ФИНАЛЬНЫЙ ОТВЕТ: x принадлежит интервалу [-2 , 1.5]
А нам в ответ нужно записать ТОЛЬКО ЦЕЛЫЕ ЧИСЛА
ответ: -2; -1; 0; 1.
3х-у=15
умножим второе уравнение на (+5)
2х+5у=-7
15х-5у=75
складываем
17х=68
х=68\17
х=4
тогда
2х+5у=-7
2*4+5у=-7
8+5у=-7
5у=-7-8
5у=-15
у=-15\5
у=-3
ответ(4,-3)
2) 2х-3у=11
5х+у=2
умножим второе уравнение на (+3)
2х-3у=11
15х+3у=6
складываем
17х=17
х=1
тогда
2х-3у=11
2*1-3у=11
2-3у=11
-3у=11-2
-3у=9
у=-3
ответ---(1,-3)
3)5х+у=14
3х-2у=-2
умножим первое уравнение на (+2)
10х+2у=28
3х-2у=-2
складываем
13х=26
х=2
тогда
3х-2у=-2
3*2-2у=-2
6-2у=-2
-2у=-2-6
-2у=-8
у=-8\-2
у=4
ответ(2,4)
4)х+3у=7
х+2у=5
умножим второе уравнение на (-1)
х+3у=7
-х-2у=-5
складываем
у=2
тогда
х+3у=7
х+3*2=7
х+6=7
х=7-6
х=1
ответ(1,2)
5)2х+3у=10
х-2у=-9
умножим второе уравнение на (-2)
2х+3у=10
-2х+4у=18
складываем
7у=28
у=4
тогда
х-2у=-9
х-2*4=-9
х-8=-9
х=-9+8
х=-1
ответ(-1,4)в
Перед нами квадратное неравенство 2х² + х -6 ≤ 0.
Для начала решим квадратное уравнение 2х² + х -6
Решаем квадратное уравнение
x 1 = -2
x 2 = 1.5
Интервалы знакопостоянства
Определяем интервалы, на которых функция не меняет знак - интервалы знакопостоянства.
( -∞ , -2) ( -2 , 1.5) ( 1.5 , +∞)
Определяем, какой знак принимает функция на каждом интервале.
( -∞ , -2) плюс
( -2 , 1.5) минус
( 1.5 , +∞) плюс
Записываем интервалы, удовлетворяющие неравенству.
( -2 , 1.5)
Проверяем входят ли концы интервалов в ответ.
[-2 , 1.5]
ФИНАЛЬНЫЙ ОТВЕТ:
x принадлежит интервалу [-2 , 1.5]
А нам в ответ нужно записать ТОЛЬКО ЦЕЛЫЕ ЧИСЛА
ответ: -2; -1; 0; 1.