Объяснение:
5;- 7;√36; 3,1; 3/5× √5; -0,1; -0.4×√2;10;- 5 1/8;
а)5;√36;10;
б)3,1;
Натуральные числа- числа, которые употребляются при счете предметов
- 7 =-7/1 - рациональное, не является положительным
√36=6 - натур.
3,1=31/10 - рациональное
3/5× √5 иррациональное √5 - иррационально
-0.1 - рациональное, но не является положительным
-0.4×√2 - иррационально так как √2 - иррационально
10 - натуральное
- 5 1/8=-41/8 - рационально, но не положительно
Рациональное число — число, которое можно представить обыкновенной дробью, числитель которого — целое число, а знаменатель— натуральное число.
0
Находим точку, симметричную точке (2;-3) относительно оси ординат. Для этого надо поменять знак у абсциссы. Получаем точку (-2;-3)
Находим общее уравнение прямой, параллельной y = 1,5x -2,5.
у = 1,5х -2,5 => k=1,5 => y = 1,5x +b
Находим b. Для этого в уравнение y = 1,5x +b подставляем координаты точки принадлежащей данной прямой, т.е. точки (-2;-3)
1,5*(-2)+b = -3
-3+b = -3
b = -3+3
b = 0
Итак, y =1,5x - уравнение параллельной прямой у=1,5х-2,5 и проходящей через точку, симметричную точке (2;-3) относительно оси ординат.
Теперь находим абсциссу точки пересечения найденной прямой с осью абсцисс.
у = 0 - уравнение оси абсцисс
1,5 х = 0
х = 0:1,5
х = 0
(0;0) - точка пересечения прямой у=1,5х с осью Ох
х = 0 - искомая абсцисса
Объяснение:
5;- 7;√36; 3,1; 3/5× √5; -0,1; -0.4×√2;10;- 5 1/8;
а)5;√36;10;
б)3,1;
Натуральные числа- числа, которые употребляются при счете предметов
- 7 =-7/1 - рациональное, не является положительным
√36=6 - натур.
3,1=31/10 - рациональное
3/5× √5 иррациональное √5 - иррационально
-0.1 - рациональное, но не является положительным
-0.4×√2 - иррационально так как √2 - иррационально
10 - натуральное
- 5 1/8=-41/8 - рационально, но не положительно
Рациональное число — число, которое можно представить обыкновенной дробью, числитель которого — целое число, а знаменатель— натуральное число.
0
Объяснение:
Находим точку, симметричную точке (2;-3) относительно оси ординат. Для этого надо поменять знак у абсциссы. Получаем точку (-2;-3)
Находим общее уравнение прямой, параллельной y = 1,5x -2,5.
у = 1,5х -2,5 => k=1,5 => y = 1,5x +b
Находим b. Для этого в уравнение y = 1,5x +b подставляем координаты точки принадлежащей данной прямой, т.е. точки (-2;-3)
1,5*(-2)+b = -3
-3+b = -3
b = -3+3
b = 0
Итак, y =1,5x - уравнение параллельной прямой у=1,5х-2,5 и проходящей через точку, симметричную точке (2;-3) относительно оси ординат.
Теперь находим абсциссу точки пересечения найденной прямой с осью абсцисс.
у = 0 - уравнение оси абсцисс
1,5 х = 0
х = 0:1,5
х = 0
(0;0) - точка пересечения прямой у=1,5х с осью Ох
х = 0 - искомая абсцисса