, алгебра 8 класс. 1. При каких значениях х функция у = -3х² + 7х + 1 принимает значение равное -5?
2. Постройте график функции у = х² + 4х – 12 . Найдите по графику :
а) при каких значениях х функция принимает положительные , отрицательные значения;
б) промежутки возрастания и убывания;
в) наибольшее или наименьшее значение функции.
3. Не выполняя построения найдите наибольшее или наименьшее значение функции у = 7х² - 4х
4. Найдите точки пересечения графиков функций у = - х - 1 и у = -( х + 2)² + 3
5. Сократите дробь:
8х² – 2х - 1
16х² + 8х + 1
Ищем дискриминант:D=0^2-4*81*(-9)=-4*81*(-9)=-324*(-9)=-(-324*9)=-(-2916)=2916;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(2 радикал 2916-0)/(2*81)=54/(2*81)=54/162=1//3~~0.333;x_2=(-2 радикал 2916-0)/(2*81)=-54/(2*81)=-54/162=-(1//3)~~-0.333.
2)Выражение: 16-4*y^2=0
Квадратное уравнение, решаем относительно y:
Ищем дискриминант:D=0^2-4*(-4)*16=-4*(-4)*16=-(-4*4)*16=-(-16)*16=-(-16*16)=-(-256)=256;
Дискриминант больше 0, уравнение имеет 2 корня:y_1=(2 радикал 256-0)/(2*(-4))=16/(2*(-4))=16/(-2*4)=16/(-8)=-16/8=-2;y_2=(-2 радикал 256-0)/(2*(-4))=-16/(2*(-4))=-16/(-2*4)=-16/(-8)=-(-16/8)=-(-2)=2.
3)Выражение: 0.004*x^3-25*x=0
ответ: (1//250)*x^3-25*x=0
Пусть пешеход из А до встречи х км
Тогда второй, из В х км.
Скорость первого, найденная по расстоянию от места встречи до пункта В, равна (3-х):12 км/мин
Скорость второго по расстоянию от места встречи до А равна х:48 км/мин
Так как пешеходы вышли одновременно, до встречи каждый из них шел одинаковое время:
Первый шел х:((3-х):12)
Второй шел (3-х):(х:48)
Составим уравнение из равенства времени до места встречи:
х:((3-х):12)=(3-х):(х:48)
После некоторых преобразований и сокращения чисел уравнения на 36 получим квадратное уравнение
х²-8х+12=0
Корни этого уравнения ( решить сумеете его самостоятельно)
6 и 2.
Первый корень не подходит, т.к. расстояние равно 3 км.
ответ: пешеходы встретятся на расстоянии 2 км от пункта А.
( Можно решать, выразив время в часах: 48 мин=4/5 часа, 12 мин=1/5 часа)