Потому что чтобы найти знаменатель геометрической прогрессии (это число на которое умножается каждый последующий член) нужно последующий член разделить на предыдущий. РазделимV5/5= 5/5V5 (домножили числитель. И знамен. На V5) Теперь разделим 1/V5 домножим на 5 (чтобы знаменатель был как в первой дроби) получилось 5/V5 => знаменатель получается одинаковый в обоих случаях=> это геометрическая прогрессия. Если попробуешь сделать также с другими примерами, то ничего не получится. Надеюсь понятно.
в) (а-2√(3а)+3)/(а-3)=(√а-√3)²/(а-3) можно оставить так или так: (а-2√(3а)+3)/(а-3)=(√а-√3)²/((√а)²-(√3)²)=(√а-√3)²/(√а-√3)(√а+√3)=(√а-√3)/(√а+√3) или так: (√а-√3)/(√а+√3)=(√а-√3)(√а+√3)/(√а+√3)(√а+√3)=(а-3)/(√а+√3)² как больше нравится
а) (√а+1)/(а-1)=(√а+1)/(√а+1)(√а-1)=1/(√а-1)
б) (13-√13)/√13=√13-1
в)
(а-2√(3а)+3)/(а-3)=(√а-√3)²/(а-3) можно оставить так
или так:
(а-2√(3а)+3)/(а-3)=(√а-√3)²/((√а)²-(√3)²)=(√а-√3)²/(√а-√3)(√а+√3)=(√а-√3)/(√а+√3)
или так:
(√а-√3)/(√а+√3)=(√а-√3)(√а+√3)/(√а+√3)(√а+√3)=(а-3)/(√а+√3)²
как больше нравится
2)
а) 3/(2√6)=(3√6)/(2*6)=(3√6)/(4*3)=√6/4
10/(√14-2)=10(√14+2)/(√14-2)(√14+2)=10(√14+2)/(14-4)=√14+2
3)
а) √5b^2,если b≤ 0
√5b^2=-b√5, b≤0
б) √(12а⁴)=√(3*4а⁴)=2а²√3
в) √(-а^5)=√(-а*а⁴)=а²√(-а), только если a≤0
г)
√((-а^3)(b^6)) ,если b>0
√((-а³)(b^6))=a*b³√(-а) только если a≤0