3) Биссектриса угла делит противоположную сторону на отрезки пропорциональные прилегающим сторонам.
КС/ВК = АС/АВ
18/8=АС/12
АС=(18 х 12) : 8=27
4) BM : MC = 2 : 9, то есть BM = 2x и MC = 9x
Рассмотрим ΔABC и ΔKBM
По условию MK ║ AC ⇒ ∠BKM = ∠A - соответственные углы
∠B - общий ⇒ ΔABC ~ ΔKBM по двум равным углам. ⇒
ответ: AC = 99 см
5) Рассмотрим треугольники ВСО и АОД:
1) угол ВСО = углу АОД (вертикальные углы);
2) угол АДО = углу ОВС (накрест лежащие при параллельных ВС и АД и секущей АД)
Значит треугольник ВСО подобен треугольнику АОД по первому признаку.
Из подобнисти треугольников следует пропорциональность сторон:
ВС/AD = BO/OD
3/5 = х/х-24
72-3х = 5х
-8х = -72
х = 9
ВО = 9 см
ОД = 15 см
3) Биссектриса угла делит противоположную сторону на отрезки пропорциональные прилегающим сторонам.
КС/ВК = АС/АВ
18/8=АС/12
АС=(18 х 12) : 8=27
4) BM : MC = 2 : 9, то есть BM = 2x и MC = 9x
Рассмотрим ΔABC и ΔKBM
По условию MK ║ AC ⇒ ∠BKM = ∠A - соответственные углы
∠B - общий ⇒ ΔABC ~ ΔKBM по двум равным углам. ⇒
ответ: AC = 99 см
5) Рассмотрим треугольники ВСО и АОД:
1) угол ВСО = углу АОД (вертикальные углы);
2) угол АДО = углу ОВС (накрест лежащие при параллельных ВС и АД и секущей АД)
Значит треугольник ВСО подобен треугольнику АОД по первому признаку.
Из подобнисти треугольников следует пропорциональность сторон:
ВС/AD = BO/OD
3/5 = х/х-24
72-3х = 5х
-8х = -72
х = 9
ВО = 9 см
ОД = 15 см
Формула разности квадратов: a² - b² = (a+b)(a-b)
Перепишем данное выражение, чтобы легче было применить формулу разности квадратов:
2x² - 2 = 2(x² - 1)
Теперь мы видим, что у нас есть разность двух квадратов: x² и 1.
Применяя формулу разности квадратов, мы выразим 2(x² - 1) как произведение множителей:
2(x² - 1) = 2(x + 1)(x - 1)
Таким образом, формула, которую мы использовали, чтобы разделить данное выражение на множители, это формула разности квадратов: a² - b² = (a+b)(a-b).
Итак, получается, что 2x² - 2 = 2(x + 1)(x - 1).