Из условия известно, что первое уравнение этой системы обращается в верное равенство при x= 8 и y= −7; тогда, подставив эти значения переменных в первое уравнение, можно найти коэффициент a.
Получим:
ax+3y=11;8a+3⋅(−7)=11;8a=11−(−21);8a=32;a=4.
При таком значении коэффициента a данная система примет вид:
{4x+3y=115x+2y=12
Для решения этой системы уравнений графически построим в одной координатной плоскости графики каждого из уравнений.
Графиком уравнения 4x+3y=11 является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x −1 2
y 5 1
Построим на координатной плоскости xОy прямую m, проходящую через эти две точки.
Графиком уравнения 5x+2y=12 также является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x 0 2
y 6 1
Построим на координатной плоскости xОy прямую n, проходящую через эти две точки.
Получим:
Прямые m и n пересекаются в точке A, координаты которой являются решением системы, т. е. A(2;1)
Решением системы неравенств называют такие значения переменной, которые являются решениями сразу всех неравенств, входящих в эту систему. Решить систему неравенств – значит найти решения для всей системы, либо доказать, что у данной системы решений нет. Чтобы решить систему неравенств с одной переменной, надо: 1) отдельно решить каждое неравенство; 2) найти пересечение найденных решений. Это пересечение и является множеством решений системы неравенств. Пример: Решите систему неравенств |4x + 4 ≥ 0 |6 – 4x ≥ 0 Решение: |4x ≥ –4 |–4x ≥ –6 ↓ |x ≥ –4 : 4 |x ≥ –6 : (–4) ↓ |x ≥ –1 |x ≥ 1,5 ответ: [–1; 1,5]
a=4
(2;1)
Объяснение:
Из условия известно, что первое уравнение этой системы обращается в верное равенство при x= 8 и y= −7; тогда, подставив эти значения переменных в первое уравнение, можно найти коэффициент a.
Получим:
ax+3y=11;8a+3⋅(−7)=11;8a=11−(−21);8a=32;a=4.
При таком значении коэффициента a данная система примет вид:
{4x+3y=115x+2y=12
Для решения этой системы уравнений графически построим в одной координатной плоскости графики каждого из уравнений.
Графиком уравнения 4x+3y=11 является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x −1 2
y 5 1
Построим на координатной плоскости xОy прямую m, проходящую через эти две точки.
Графиком уравнения 5x+2y=12 также является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x 0 2
y 6 1
Построим на координатной плоскости xОy прямую n, проходящую через эти две точки.
Получим:
Прямые m и n пересекаются в точке A, координаты которой являются решением системы, т. е. A(2;1)
Объяснение:
Решить систему неравенств – значит найти решения для всей системы, либо доказать, что у данной системы решений нет.
Чтобы решить систему неравенств с одной переменной, надо:
1) отдельно решить каждое неравенство;
2) найти пересечение найденных решений.
Это пересечение и является множеством решений системы неравенств.
Пример: Решите систему неравенств
|4x + 4 ≥ 0
|6 – 4x ≥ 0
Решение:
|4x ≥ –4
|–4x ≥ –6
↓
|x ≥ –4 : 4
|x ≥ –6 : (–4)
↓
|x ≥ –1
|x ≥ 1,5
ответ: [–1; 1,5]