1) Пусть k>0. Возьмём два значения x1 и x2, причём x2>x1. Исследуем разность y(x2)-y(x1)=k*x2+m-(k*x1+m)=k*(x2-x1). Поскольку x2>x1, то x2-x1>0, а тогда - так как k>0 - и y(x2)-y(x1)=k*(x2-x1)>0. Таким образом, при x2>x1 y(x2)>y(x1), а это значит, что при k>0 функция y=k*x+m монотонно возрастает.
2) Пусть теперь k<0. Снова возьмём два значения x1 и x2, причём x2>x1. Исследуем разность y(x2)-y(x1)=k*x2+m-(k*x1+m)=k*(x2-x1). Поскольку x2>x1, то x2-x1>0, но так как k<0, то y(x2)-y(x1)=k*(x2-x1)<0. Таким образом, при x2>x1 y(x2)<y(x1), а это значит, что при k<0 функция y=k*x+m монотонно убывает.
Объяснение:
Рациональным называется число, которое можно записать простой дробью: q / s, где q - целое, s - натуральное.
Разность рациональных чисел - это рациональное число.
Доказательство:
k/m - n/p = (kp - mn) / mp = q / s,
где q = kp - mn (целое), s = mp (натуральное)
a^2 и b^2 - рациональные числа.
Значит, их разность также является рациональным числом.
Разложим разность квадратов:
a^2 - b^2 = (a - b)(a + b)
Отсюда a + b = (a^2 - b^2) / (a - b)
Это частное рациональных чисел.
Выясним, является ли рациональным частное рациональных чисел.
(k/m) / (n/p) = kp / mn = q / s,
где q = kp (целое), s = mn (натуральное)
при условии, что n/p (делитель) не равен 0.
Да: частное рациональных чисел также рационально.
a + b = (a^2 - b^2) / (a - b) - это частное, в котором делитель (a - b) не равен 0 (так как a не равно b).
Следовательно, a + b - рациональное число, ч. т. д.
2) Пусть теперь k<0. Снова возьмём два значения x1 и x2, причём x2>x1. Исследуем разность y(x2)-y(x1)=k*x2+m-(k*x1+m)=k*(x2-x1). Поскольку x2>x1, то x2-x1>0, но так как k<0, то y(x2)-y(x1)=k*(x2-x1)<0. Таким образом, при x2>x1 y(x2)<y(x1), а это значит, что при k<0 функция y=k*x+m монотонно убывает.