все просто тут две дроби приводят к общему знаменателю: у 2 и 9 - это 18, потом мы узнаем "дополнительные множители", то есть общий знаменатель делим на знаменатель каждой дроби: 18:2=9 - дополнительный множитель первой дроби, 18:9=2 - дополнительный множитель второй дроби. теперь мы и числитель, и знаменатель каждой дроби умножаем на её дополнительны множитель: 1×9=9 - числитель первой дроби, 2×9=18 - знаменатель первой дроби; 3×2=6 - числитель второй дроби, 9×2=18 - знаменатель второй дроби. потом мы из числителя первой дроби вычитем числитель второй дроби: 9-6=3 - числитель новой дроби, а знаменатель оставляем прежний, и у нас получается 3/18, но мы можем сократить на 3, и получаем: 3:3=1, 18:3=6, в итоге мы получаем дробь 1/6
Простые числа при делении на 10 могут давать остатки только
1, 2, 3, 5, 7, 9 - всего 6 различных остатков
Откуда 2 и 5 - это мы учли что сами числа 2 и 5, простые, несмотря на то, что все остальные, дающие остаток 2 и 5 при делении на 10 очевидно составные.
А у нас целых 11 чисел. По принципу Дирихле обязательно найдутся два числа с одинаковым остатком при делении на 10. Их разность будет делиться на 10 без остатка.
Я больше скажу, среди 11 любых чисел найдутся два, разность которых делится на 10 без остатка.
все просто тут две дроби приводят к общему знаменателю: у 2 и 9 - это 18, потом мы узнаем "дополнительные множители", то есть общий знаменатель делим на знаменатель каждой дроби: 18:2=9 - дополнительный множитель первой дроби, 18:9=2 - дополнительный множитель второй дроби. теперь мы и числитель, и знаменатель каждой дроби умножаем на её дополнительны множитель: 1×9=9 - числитель первой дроби, 2×9=18 - знаменатель первой дроби; 3×2=6 - числитель второй дроби, 9×2=18 - знаменатель второй дроби. потом мы из числителя первой дроби вычитем числитель второй дроби: 9-6=3 - числитель новой дроби, а знаменатель оставляем прежний, и у нас получается 3/18, но мы можем сократить на 3, и получаем: 3:3=1, 18:3=6, в итоге мы получаем дробь 1/6
Простые числа при делении на 10 могут давать остатки только
1, 2, 3, 5, 7, 9 - всего 6 различных остатков
Откуда 2 и 5 - это мы учли что сами числа 2 и 5, простые, несмотря на то, что все остальные, дающие остаток 2 и 5 при делении на 10 очевидно составные.
А у нас целых 11 чисел. По принципу Дирихле обязательно найдутся два числа с одинаковым остатком при делении на 10. Их разность будет делиться на 10 без остатка.
Я больше скажу, среди 11 любых чисел найдутся два, разность которых делится на 10 без остатка.