a(a + 5b) - (a + b)(a - b)=a^2+5ab-a^2+b^2=5ab+b^2
b(3a-b) - (a - b)(a + b)=3ab-b^2-a^2+b^2=3ab-a^2
(y+10)(y-2)-4y(2 - 3y)=y^2+8y-20-8y+12y^2=13y^2-20
(a-4)(a+9)-5a(1-2a)=a^2+5a-36-5a+10a^2=11a^2-36
(2b-3)(3b+2)-3b(2b+3)=6b^2-9b+4b-6-6b^2-9b=-14b-6
(3a-1)(2a-3)-2a(3a+5)=6a^2-2a-6a+4-6a^2-10a=-18a+4
(m+3)^2 -(m-2)(m+2)=m^2+6m+9-m^2+4=5m+13
(a-1)^ - (a+1)(a-2)=a^2-2a+1-a^2-a-2=-3a-1
(c+2)(c-3)-(c-1)^2=c^2-c-6-c^2+2c-1=c-7
(y-4)(y+4)-(y-3)^=y^2-16-y^2+6y-9=6y-25
(a-2)(a+4)-(a+1)^ =a^2+2a-8-a^2-2a-1=-9
(b-4)(b+2)-(b-1)^=b^2-2b-8-b^2+2b-1=-9
Думаю так
a1 + a2 + a3 + a4 = a
a1 + n = a2 - n
a1 + n = a3*n
a1 + n = a4/n
Выразим все части через а1
a2 = a1 + 2n
a3 = a1/n + 1
a4 = a1*n + n^2
Подставим в сумму
a1 + a1 + 2n + a1/n + 1 + a1*n + n^2 = a
Умножим все на n
2a1*n + 2n^2 + a1 + n + a1*n^2 + n^3 = a*n
Выделяем а1
a1*(2n + 1 + n^2) = a*n - n^3 - 2n^2 - n
Выделяем полные квадраты
a1*(n + 1)^2 = a*n - n(n + 1)^2
Делим
a1 = a*n/(n+1)^2 - n
Остальные части получаем подстановкой.
a2 = a1 + 2n = a*n/(n+1)^2 + n
a3 = a1/n + 1 = a/(n+1)^2 - 1 + 1 = a/(n+1)^2
a4 = a1*n + n^2 = a*n^2/(n+1)^2 - n^2 + n^2 = a*n^2/(n+1)^2
Для a = 90, n = 2 получаем
a1 = 90*2/3^2 - 2 = 90*2/9 - 2 = 10*2 - 2 = 18
a2 = a1 + 2n = 18 + 4 = 22
a3 = a1/n + 1 = 18/2 + 1 = 9 + 1 = 10
a4 = a1*n + n^2 = 18*2 + 4 = 36 + 4 = 40
ответ: 18, 22, 10, 40
a(a + 5b) - (a + b)(a - b)=a^2+5ab-a^2+b^2=5ab+b^2
b(3a-b) - (a - b)(a + b)=3ab-b^2-a^2+b^2=3ab-a^2
(y+10)(y-2)-4y(2 - 3y)=y^2+8y-20-8y+12y^2=13y^2-20
(a-4)(a+9)-5a(1-2a)=a^2+5a-36-5a+10a^2=11a^2-36
(2b-3)(3b+2)-3b(2b+3)=6b^2-9b+4b-6-6b^2-9b=-14b-6
(3a-1)(2a-3)-2a(3a+5)=6a^2-2a-6a+4-6a^2-10a=-18a+4
(m+3)^2 -(m-2)(m+2)=m^2+6m+9-m^2+4=5m+13
(a-1)^ - (a+1)(a-2)=a^2-2a+1-a^2-a-2=-3a-1
(c+2)(c-3)-(c-1)^2=c^2-c-6-c^2+2c-1=c-7
(y-4)(y+4)-(y-3)^=y^2-16-y^2+6y-9=6y-25
(a-2)(a+4)-(a+1)^ =a^2+2a-8-a^2-2a-1=-9
(b-4)(b+2)-(b-1)^=b^2-2b-8-b^2+2b-1=-9
Думаю так