Исходя из условия составим систему уравнений и решим ее:
10a + b = 6(a + b)
10a + b + ab = 74
Из первого уравнения выразим a (a = 5b/4) и подставим во второе. После некоторых преобразований получим квадратное уравнение:
1,25b^2 + 13,5b - 74 = 0
решить которое не составит никакого труда (D = 552,25, корень из D = 23,5).
Получим 2 корня, один из которых отрицательный и, следовательно, не подходит, а второй корень b = 4, это и есть вторая цифра. Подставив ее в уравнение a = 5b/4 получим, что a = 5
1. Первый каменщик выполнит работу за: T1 дней;
2. Второй каменщик выполнит работу за: T2 дней;
3. По условию задачи: T2 = (T1 - 4) дней;
4. Вместе они выполнят работу за: To = 4,8 дней;
5. Составляем уравнение выполнения работы двумя каменщиками:
1 / T1 + 1 / T2 = 1 / To = 1/ 4,8;
1 / T1 + 1 / (T1 - 4) = (2 * T1 - 5) / (T1 * (T1 - 4)) = 1/4,8;
4,8 * (2 * T1 - 4) = T1² - 4 * T1;
T1² - 13,6 * T1 + 19,2 = 0;
T11,2 = 6,8 +- sqrt(6,8² - 19,2) = 6,8 +- 5,2;
T11 = 6,8 - 5,2 = 3,6 дней (слишком быстро, To= 4,8 дней, не подходит);
T1 = 6,8 + 5,2 = 12 дней;
T2 = T1 - 4 = 12 - 4 = 8 дней.
ответ: первый каменщик выполнит работу за 12 дней, вторая за 8 дней.
a - первая цифра (кол-во десятков)
b - вторая цифра (кол-во единиц)
Тогда искомое число равно 10a + b
Исходя из условия составим систему уравнений и решим ее:
10a + b = 6(a + b)
10a + b + ab = 74
Из первого уравнения выразим a (a = 5b/4) и подставим во второе. После некоторых преобразований получим квадратное уравнение:
1,25b^2 + 13,5b - 74 = 0
решить которое не составит никакого труда (D = 552,25, корень из D = 23,5).
Получим 2 корня, один из которых отрицательный и, следовательно, не подходит, а второй корень b = 4, это и есть вторая цифра. Подставив ее в уравнение a = 5b/4 получим, что a = 5
Итого: a = 5, b = 4. Искомое число = 54