АЛГЕБРА Какая из прямых проходит через точки M(3;2) и N(-1;-4)?
Выберите один ответ:
a. 3x+2y=-6
b. 3x-2y=5
c. 2x+3y=-5
d. 2x-3y=6
Найдите абсциссу точки прямой 4x-3y=5, ордината корой равна 1.
Выберите один ответ:
a. 2
b. -1
c. 1
d. 4
Какая из прямых проходит через точки M(3;2) и N(-1;-4)?
Выберите один ответ:
a. 3x+2y=-6
b. 3x-2y=5
c. 2x+3y=-5
d. 2x-3y=6
Вычислите координаты точки пересечения прямой 3x-2y=6 с осью х
Выберите один ответ:
a. (0; 2)
b. (-3; 0)
c. (2; 0)
d. (0; -3)
2х² - 10х - 32 ≥ 0
Решение системы двух неравенств не так просто, поэтому при нахождении корней достаточно сделать проверку.
Подставить корни в систему неравенств или подставить корни в уравнение
Так как
2х²-10х-32=2(х²-5х-16)
то применяем метод замены переменной
х²-5х-23=t ⇒ x²-5x=t+23
x²-5x-16=t+23-16=t+7
Уравнение примет вид
√t + √2·(t+7)=5
или
√2·(t+7) = 5 - √t
Возводим обе части уравнения в квадрат
При этом правая часть должна быть положительной или равной 0
( (5 - √t)≥0 ⇒√ t ≤ 5 ⇒ t ≤ 25)
2·( t + 7) = 25 - 10 √t + t
или
10·√t = 25 + t - 2t - 14
10·√t = 11 - t
Еще раз возводим в квадрат, при условии, что 11 - t ≥ 0 t ≤ 11
Получаем уравнение
100 t = 121 - 22 t + t², при этом t ≤ 11
t² - 122 t + 121 = 0
D=122²-4·121=14884 - 484 = 14400=120
t₁=(122-120)/2= 1 или t₂= (122+120)/2 = 121 не удовлетворяет условию ( t ≤ 11)
возвращаемся к переменной х:
х² - 5х - 23 = 1
х² - 5х - 24 = 0
D=25+96=121=11²
x₁=(5-11)/2=-3
х₂=(5+11)/2=8
Проверка
х = - 3 √(9 +15 - 23) + √2·(9 +15 - 16) = 5 - верно 1+4=5
х = 8 √(64 - 40 - 23) + √2·(64-40 -16) = 5 - верно 1+4=5
ответ. х₁=-3 х₂=8
ОДЗ:
{x-10>0 {x>10
x-11>0 x>11 ⇒x>11
log₉₀((x-10)*(x-11))≤1. 1=log₉₀90¹=log₉₀90
log₉₀(x²-21x+110)≤log₉₀90
основание логарифма а=90, 90>1 знак неравенства не меняем.
x²-21x+110≤90
x²-21x+20≤0 метод интервалов:
1. x²-21x+20=0
2. x₁=_21-41)/2, x₂=(21-41)/2
3.
+ - +
(21-41)/2(21+41)/2>x
x∈((21-√41)/2;(21+√41)/2)
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
(21-√41)/2)(11)(21+√41)/2>x
/ / / / / / / / / / / / / / / / / / / / / / / /
x∈(11;(21+√41)/2)