Отыщем область значений указанной функции. Для этого сначала преобразуем определённым образом подкоренное выражение для удобства: раскроем скобки, затем дважды используем формулу понижения степени, приведя выражение к квадратному трёхчлену относительно некоторой функции.
Таким образом, мы смогли привести подкоренное выражение к квадратному трёхчлену относительно sin4x. На всякий случай скажу, что в препоследнем равенстве с формулы понижения степени я выразил квадрат синуса через косинус удвоенного угла.
Теперь всё сводится к нахождению наименьшего и наибольшего значений полученного трёхчлена. Если мы сделаем замену t = sin 4x, то получаем квадратный трёхчлен
, ветви соответствующей параболы которого направлены вниз в силу отрицательности коэффициента при квадрате. Найдём её абсциссу оси симметрии: . Следовательно, квадратичная функция правее оси симметрии монотонно убывает, то есть, при . Поэтому большему значению функции соответствует меньшее значение аргумента. В частности, это происходит и на отрезке . Почему этот отрезок важен, так потому, что вспоминаем, что t - это у нас не переменная сама по себе, а синус, который принимает значения именно из указанного отрезка.
Итак, на отрезке [-1,1] квадратный трёхчлен относительно t убывает, поэтому наименьшее его значение достигается в правом конце(в точке 1), а наибольшее - в левом(в точке -1). То есть, , где . То есть, .
А тогда квадратный корень из этого выражения(в силу своей монотонности), даёт . Теперь считаем, какие целые числа входят в полученную область значений. 0, 1, 2, 3 - и всё. Их ровно 4.
Применяем основное тригонометрическое тождество:
1 /[sin(5x)*cos(5x)] = 4
1 = 4*[sin(5x)*cos(5x)]
2sin(10x) = 1
sin10x = 1/2
10x = (-1)^(n)*arcsin(1/2) + πn, n∈Z
10x = (-1)^(n)*(π/6) + 2πn, n∈Z
x = (-1)^(n)*(π/60) + πn/5, n∈Z
2) 4cos^2x-12sin(П-x)+3=0
4*(1 - sin²x) - 12sinx + 3 = 0
4 - 4sin²x - 12sinx + 3 = 0
4sin²x + 12sinx - 7 = 0
six = t
4t² + 12t - 7 = 0
D = 144 + 4*4*7 = 256
t₁ = (-12 - 16)/2
t₁ = - 14 не удовлетворяет условию: IsinxI ≤ 1
t₂ = (-12 + 16)/2
t₂ = 2 не удовлетворяет условию: IsinxI ≤ 1
Решений нет
Для этого сначала преобразуем определённым образом подкоренное выражение для удобства: раскроем скобки, затем дважды используем формулу понижения степени, приведя выражение к квадратному трёхчлену относительно некоторой функции.
Таким образом, мы смогли привести подкоренное выражение к квадратному трёхчлену относительно sin4x. На всякий случай скажу, что в препоследнем равенстве с формулы понижения степени я выразил квадрат синуса через косинус удвоенного угла.
Теперь всё сводится к нахождению наименьшего и наибольшего значений полученного трёхчлена. Если мы сделаем замену t = sin 4x, то получаем квадратный трёхчлен
, ветви соответствующей параболы которого направлены вниз в силу отрицательности коэффициента при квадрате. Найдём её абсциссу оси симметрии:
. Следовательно, квадратичная функция правее оси симметрии монотонно убывает, то есть, при . Поэтому большему значению функции соответствует меньшее значение аргумента. В частности, это происходит и на отрезке . Почему этот отрезок важен, так потому, что вспоминаем, что t - это у нас не переменная сама по себе, а синус, который принимает значения именно из указанного отрезка.
Итак, на отрезке [-1,1] квадратный трёхчлен относительно t убывает, поэтому наименьшее его значение достигается в правом конце(в точке 1), а наибольшее - в левом(в точке -1). То есть,
, где .
То есть, .
А тогда квадратный корень из этого выражения(в силу своей монотонности), даёт .
Теперь считаем, какие целые числа входят в полученную область значений.
0, 1, 2, 3 - и всё. Их ровно 4.