Если одночлены состоят из одинаковых переменных в одинаковых степенях, то они являютсяподобными. Коэффициенты одночленов при этом могут различаться. Примеры подобных одночленов: 3a2 и –4a2; 31 и 45; a2bx4 и 1,4a2bx4; 100y3и 100y3
Но одночлены –6ab2 и 6ab не являются подобными, так как у них переменная b находится в разных степенях.
Подобные одночлены обладают удивительным свойством — их можно легко складывать и вычитать. Если нужно найти сумму двух или более подобных одночленов, то их коэффициенты надо сложить, а переменные в сумме оставить без изменений. Если же требуется найти разность двух подобных одночленов, то коэффициент одного одночлена надо вычесть из второго, а переменные оставить без изменений. Примеры: 4x2 + 15x2 = 19x2 5ab – 1,7ab = 3,3ab 13a10b5c3 – 13a10b5c3 = 0a10b5c3 = 0
Эти действия называются приведением подобных одночленов.
Почему же подобные одночлены можно так складывать и вычитать? Попробуем упростить выражения, не используя правила приведения подобных одночленов: 2x + 4x = (x + x) + (x + x + x + x) = x + x + x + x + x + x = 6 * x = 6x 2x – 4x = (x + x) – (x + x + x + x) = x + x – x – x – x – x = – x – x = – (x + x) = –(2x) = –2x
То есть свойство подобных членов вытекает из правила арифметики о том, что произведение двух чисел является ничем иным как суммой из слагаемых одного числа, где количество слагаемых равно другому числу: 2 * 3 = 3 + 3 = 2 + 2 + 2
a + b + c=0 (1)
a^2 + b^2 + c^2=1 (2)
a^4 + b^4 + c^4 - ?
(a + b + c)^2=0^2
a^2 + b^2 + c^2 + 2 * (ab + ac + bc) = 0
из (2) получим:
2 * (ab + ac + bc) = -1
ab + ac + bc = -1/2
(a^2 + b^2 + c^2)^2 = 1^2
(a^4 + b^4 + c^4) + 2 * (a^2*b^2 + a^2*c^2 + b^2*c^2) = 1
a^4 + b^4 + c^4 = 1 - 2 * (a^2*b^2 + a^2*c^2 + b^2*c^2) (3)
найдём (a^2*b^2 + a^2*c^2 + b^2*c^2):
ab + ac + bc = -1/2
(ab + ac + bc)^2 = 1/4
(a^2*b^2 + a^2*c^2 + b^2*c^2) + 2 * (a^2*b*c + a*b^2*c + a*b*c^2) = 1/4
a^2*b^2 + a^2*c^2 + b^2*c^2 = 1/4 - 2 * abc * (a+b+c)
Зная (1):
a^2*b^2 + a^2*c^2 + b^2*c^2 = 1/4
Вернёмся к (3):
a^4 + b^4 + c^4 = 1 - 2 * 1/4 = 1 - 1/2 = 1/2
Если одночлены состоят из одинаковых переменных в одинаковых степенях, то они являютсяподобными. Коэффициенты одночленов при этом могут различаться. Примеры подобных одночленов:
3a2 и –4a2; 31 и 45; a2bx4 и 1,4a2bx4; 100y3и 100y3
Но одночлены –6ab2 и 6ab не являются подобными, так как у них переменная b находится в разных степенях.
Подобные одночлены обладают удивительным свойством — их можно легко складывать и вычитать. Если нужно найти сумму двух или более подобных одночленов, то их коэффициенты надо сложить, а переменные в сумме оставить без изменений. Если же требуется найти разность двух подобных одночленов, то коэффициент одного одночлена надо вычесть из второго, а переменные оставить без изменений. Примеры:
4x2 + 15x2 = 19x2
5ab – 1,7ab = 3,3ab
13a10b5c3 – 13a10b5c3 = 0a10b5c3 = 0
Эти действия называются приведением подобных одночленов.
Почему же подобные одночлены можно так складывать и вычитать? Попробуем упростить выражения, не используя правила приведения подобных одночленов:
2x + 4x = (x + x) + (x + x + x + x) = x + x + x + x + x + x = 6 * x = 6x
2x – 4x = (x + x) – (x + x + x + x) = x + x – x – x – x – x = – x – x = – (x + x) = –(2x) = –2x
То есть свойство подобных членов вытекает из правила арифметики о том, что произведение двух чисел является ничем иным как суммой из слагаемых одного числа, где количество слагаемых равно другому числу:
2 * 3 = 3 + 3 = 2 + 2 + 2