А) если f(x) четная , то при х>0 мы зеркально отразим нашу функцию
относительно ординат
так как для чётных функций f(x)=f(-x)
б) если f(x) нечётная, то при х>0 мы сначала зеркально отразим нашу функцию относительно оси ординат , а затем полученный график снова зеркально отразим, но уже относительно оси абсцисс так как для нечётных функций f(x)= -f(-x)
в) если функция общего вида, то как она будет вести при х>0 нельзя сказать определенно, надо проводить дополнительные исследования функции при х>0
в знаменателе развёрнута разность квадратов, свернуть:
= 2х/(х - у);
2) Умножение:
(х√у - у√у)/2 * 2х/(х - у)=
=[√у(х - у)]/2 * 2х/(х - у)=
=[√у(х - у) * 2х] / [2 * (х - у)]=
сократить (разделить 2 и 2 на 2, (х - у) и (х - у) на (х - у):
= х√у.
8. Дана функция y=√x
а) Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
мы зеркально отразим нашу функцию
относительно ординат
так как для чётных функций f(x)=f(-x)
б) если f(x) нечётная, то при х>0
мы сначала зеркально отразим нашу функцию
относительно оси ординат , а затем полученный график снова зеркально отразим, но уже относительно оси абсцисс
так как для нечётных функций f(x)= -f(-x)
в) если функция общего вида, то как она будет вести при х>0 нельзя сказать определенно, надо проводить дополнительные исследования функции при х>0
В решении.
Объяснение:
7. Упростить:
(х√у - у√у)/2 * [√х/(√х + √у) + √х/(√х - √у)]= х√у.
1) [√х/(√х + √у) + √х/(√х - √у)]=
общий знаменатель (√х + √у)(√х - √у), надписываем над числителями дополнительные множители:
=[(√х - √у) * √х + (√х + √у) * √х] / (√х + √у)(√х - √у)=
=(х - √ху + х + √ху) / (√х + √у)(√х - √у)=
в знаменателе развёрнута разность квадратов, свернуть:
= 2х/(х - у);
2) Умножение:
(х√у - у√у)/2 * 2х/(х - у)=
=[√у(х - у)]/2 * 2х/(х - у)=
=[√у(х - у) * 2х] / [2 * (х - у)]=
сократить (разделить 2 и 2 на 2, (х - у) и (х - у) на (х - у):
= х√у.
8. Дана функция y=√x
а) Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
у=√х
1) А(63; 3√7)
3√7 = √63
3√7 = √9*7
3√7 = 3√7, проходит.
2) В(49; -7)
-7 = √49
-7 ≠ 7, не проходит.
3) С(0,09; 0,3)
0,3 = √0,09
0,3 = 0,3, проходит.
б) х∈ [0; 25]
y=√0 = 0;
y=√25 = 5;
При х∈ [0; 25] у∈ [0; 5].
в) Найдите значения аргумента, если у∈ [9; 17]
у = √х
9=√х х=9² х=81;
17=√х х=17² х=289.
При х∈ [81; 289] у∈ [9; 17].