В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
андрейка46
андрейка46
05.01.2022 07:25 •  Алгебра

Алгебра Найдите наибольший член последовательности (an), заданной формулой n-го члена:
а) an=30-n^3;
б) an=-n^2+6n+7

Заранее огромное

Показать ответ
Ответ:
KekCheburashka
KekCheburashka
17.08.2020 19:19

Сразу учтем, что n - натуральное число

а)an=30-n³

Значение примет максимальное значение при минимальном значении n³, которое достигается минимальным значением n, то есть 1. Поэтому наибольший член прогрессии a1=29

б)an=-n²+6n+7

Для определения максимального значения необходимо построить параболу и узнать максимальное значение y. a=-1<0, поэтому ветви параболы смотрят вниз, а максимальное значение принадлежит вершине. X вершины находится по формуле -b/2a=-6/-2=3

Подставим x в выражение и найдем значение.

-3²+6*3+7=-9+18+7=16.

a3=16

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота