1. Преобразуем уравнение:
4х^2 + 12х + 12/х + 4/х^2 = 47;
4(х^2 + 2 + 1/x^2) - 8 + 12(х + 1/х) - 47 = 0;
4(х + 1/x)^2 + 12(х + 1/х) - 55 = 0.
2. Замена:
х + 1/x = t;
4t^2 + 12t - 55 = 0;
D/4 = 6^2 + 4 * 55 = 36 + 220 = 256 = 16^2;
t = (-6 ± 16)/4;
t1 = (-6 - 16)/4 = -22/4 = -11/2;
t2 = (-6 + 16)/4 = 10/4 = 5/2.
3. Обратная замена:
х^2 + 1 = tx;
х^2 - tx + 1 = 0;
1) t = -11/2;
х^2 + 11/2 * x + 1 = 0;
2х^2 + 11x + 2 = 0;
D = 11^2 - 4 * 2 * 2 = 121 - 16 = 105;
x1/2 = (-11 ± √105)/4;
2) t = 5/2;
х^2 - 5/2 * x + 1 = 0;
2х^2 - 5x + 2 = 0;
D = 5^2 - 4 * 2 * 2 = 25 - 16 = 9;
x = (5 ± √9)/4 = (5 ± 3)/4;
x3 = (5 - 3)/4 = 2/4 = 1/2;
x4 = (5 + 3)/4 = 8/4 = 2.
ответ: (-11 ± √105)/4; 1/2; 2.
x-x1 y-y1
= x1=-1 x2=3 y1=8 y2=-4
x2-x1 y2-y1
x-(-1) y-8 x+1 y-8 x+1 y-8
= ⇔ = или =
3-(-1) -4-8 4 -12 1 -3
-3(x+1)=y-8 или y=-3x+5
y=kx+b
A(-1;8) ∈ y=kx+b ⇔ 8=k(-1)+b -k+b=8
и B(3;-4)∈ y=kx+b ⇔-4=k(3)+b ⇔ 3k+b=-4 ⇔4k=-12 k=-3
b=8+k=5
y=-3x+5
проверка
A(-1;8) и B(3;-4)∈ y=kx+b y=-3x+5
A(-1;8) 8=-3(-1)+5 верно
B(3;-4) -4=-3(3)+5 верно
1. Преобразуем уравнение:
4х^2 + 12х + 12/х + 4/х^2 = 47;
4(х^2 + 2 + 1/x^2) - 8 + 12(х + 1/х) - 47 = 0;
4(х + 1/x)^2 + 12(х + 1/х) - 55 = 0.
2. Замена:
х + 1/x = t;
4t^2 + 12t - 55 = 0;
D/4 = 6^2 + 4 * 55 = 36 + 220 = 256 = 16^2;
t = (-6 ± 16)/4;
t1 = (-6 - 16)/4 = -22/4 = -11/2;
t2 = (-6 + 16)/4 = 10/4 = 5/2.
3. Обратная замена:
х + 1/x = t;
х^2 + 1 = tx;
х^2 - tx + 1 = 0;
1) t = -11/2;
х^2 + 11/2 * x + 1 = 0;
2х^2 + 11x + 2 = 0;
D = 11^2 - 4 * 2 * 2 = 121 - 16 = 105;
x1/2 = (-11 ± √105)/4;
2) t = 5/2;
х^2 - 5/2 * x + 1 = 0;
2х^2 - 5x + 2 = 0;
D = 5^2 - 4 * 2 * 2 = 25 - 16 = 9;
x = (5 ± √9)/4 = (5 ± 3)/4;
x3 = (5 - 3)/4 = 2/4 = 1/2;
x4 = (5 + 3)/4 = 8/4 = 2.
ответ: (-11 ± √105)/4; 1/2; 2.