Для того, чтобы упростить выражение, используем следующие формулы тригонометрии:
sin^2 x + cos^2 x = 1;
cos (2 * x) = cos^2 x - sin^2 x;
sin (2 * x) = 2 * sin x * cos x.
Тогда получаем:
1 - sin (2 * a) - cos (2 * a) = sin^2 a + cos^2 a - (2 * sin a * cos a) - (cos^2 a - sin^2 a) = sin^2 a + cos^2 a - 2 * sin a * cos a - cos^2 a + sin^2 a;
Сгруппируем подобные значения.
(sin^2 a + sin^2 a) + (cos^2 a + cos^2 a) - 2 * sin a * cos a = 2 * sin^2 a - 2 * sin a * cos a = 2 * sin a * (sin a - cos a).
Упростим выражение 1 - sin (2 * a) - cos (2 * a).
Для того, чтобы упростить выражение, используем следующие формулы тригонометрии:
sin^2 x + cos^2 x = 1;
cos (2 * x) = cos^2 x - sin^2 x;
sin (2 * x) = 2 * sin x * cos x.
Тогда получаем:
1 - sin (2 * a) - cos (2 * a) = sin^2 a + cos^2 a - (2 * sin a * cos a) - (cos^2 a - sin^2 a) = sin^2 a + cos^2 a - 2 * sin a * cos a - cos^2 a + sin^2 a;
Сгруппируем подобные значения.
(sin^2 a + sin^2 a) + (cos^2 a + cos^2 a) - 2 * sin a * cos a = 2 * sin^2 a - 2 * sin a * cos a = 2 * sin a * (sin a - cos a).
Объяснение:
Объяснение:
1.
Пусть первое число х, тогда второе число х-7. По условию
х(х-7)=18
х²-7х-18=0
По теореме Виета х=-4 (не подходит по условию) и х=9.
Первое число 9, второе число 9-7=2.
ответ: 9 и 2.
2.
Пусть ширина прямоугольника х см, тогда длина х+11 см. По условию
х(х+11)=60
х²+11х-60=0
По теореме Виета х=-15 (не подходит) и х=4.
Ширина прямоугольника 4 см, длина 4+11=15 см.
Р=2(4+15)=38 см.
ответ: 38 см.
3.
Пусть длина прямоугольника х см, тогда ширина х-1 см.
По теореме Пифагора 5²=х²+(х-1)²
25=х²+х²-2х+1
2х²-2х-24=0; х²-х-12=0
По теореме Виета х=-3 (не подходит) и х=4
Длина прямоугольника 4 см, ширина 4-1=3 см.
Р=2(4+3)=14 см.
ответ: 14 см.
(Слишком много заданий)