X⁴-15x²-16=0 через замену у=х² получаем уравнение у²-15х - 64=0 находим d=b²-4ac=15²-4*1*(-16)=225+64=289 ⇒√d=17 находим у₁=(15-17): 2=-1 у₂=(15+17): 2= 16 вернёмся к замене х²= -1 уравнение решений не имеет х²=16 , следовательно х₁=4 и х₂= -4 2. рациональное уравнение : к общему знаменателю(3+х)(3-х) и найдём дополнительные множители к слагаемым. получаем уравнение (3х+1)(3-х)+х(3+х)=18 раскроим скобки 9х-3х²+3-х+3х+х²-18=0 -2х²+11х-15=0 домножим всё на (-1) 2х²-11х+15=0 найдём d=121-2*4*15=1 находим корни х₁=(11+1): 2=6 и х₂= (11-1): 2=5 оба корня знаменатель не обращают в 0 значит ответ 6 и 5
2cos(3x + x)/2*cos(3x - x)/2 = 0
cos2x * cosx = 0
a) cos2x = 0
2x = π/2 + πn, n∈Z
x₁ = π/4 + πn/2, n ∈Z
n = - 1
x = π/4 - π/2 = - π/4 ∈ [- π/2;π/2]
n = - 2
x = π/4 - π = - 3π/4 ∉ [- π/2;π/2]
n = 0
x = π/4 ∈ [- π/2;π/2]
n = 1
x = π/4 + π/2 = 3π/4 ∉ [- π/2;π/2]
n = 2
π/4 + π = 5π/4 ∉ [- π/2;π/2]
ответ: - π/4; π/4
b) cosx = 0
x = π/2 + πk, k∈Z
k = - 1
x = π/2 - π = - π/2 ∈ [- π/2;π/2]
k = 0
x = π/2 ∈ [- π/2;π/2]
k = 1
x = π/2 + π = 3π/2 ∉ [- π/2;π/2]
ответ: - π/2; π/2
2) 2sin² x - sin2x = cos2x
2sin²x - 2sinxcosx - (2cos²x - 1) = 0
2sin²x - 2sinxcosx - 2cos²x + sin²x + cos²x = 0
3sin²x - 2sinxcosx – cos²x = 0 / делим на cos²x ≠ 0
3tg²x - 2tgx - 1 = 0
D = 4 + 4*3*1 = 16
1) tgx = (2 - 4)/6
tgx = - 1/3
x₁ = - arctg(1/3) + πn, n∈Z
tgx = ( 2 + 4)/6
tgx = 1
x₂ = π/4 + πk, k∈Z