Пусть масса первого раствора равна х г, а масса второго раствора равна у г. По условию, х+у=800 (г) -это первое уравнение системы. 35% от 800 г равны 800*35%:100%=280 г Масса 20% первого раствора равны 0,2х г, а 40% второго раствора равны 0,4у г. Получаем, 0,2х+0,4у=280 (г) - это второе уравнение системы Решим систему уравнений: {x+y=800 {0,2x+0,4y=280
{x=800-y {0,2(800-y)+0,4y=280 160-0,2y+0,4y=280 0,2y=120 y=120:0,2 y=600 (г)-масса второго раствора х=800-600=200(г)-масса первого раствора
ответ: Необходимо взять 200 г первого и 600 г второго раствора
2)Система уравнений имеет бесчисленное множество решений.
3)Система уравнений не имеет решений.
Объяснение:
1)2х-7у= -17
5х+у=13
Выразим у через х во втором уравнении, подставим выражение в первое уравнение и вычислим х:
у=13-5х
2х-7(13-5х)= -17
2х-91+35х= -17
37х= -17+91
37х=74
х=74/37
х=2
у=13-5х
у=13-5*2
у=3
Решение системы уравнений (2; 3)
Система уравнений имеет одно решение.
Графически:
2х-7у= -17
5х+у=13
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
2х-7у= -17 5х+у=13
-7у= -17-2х у=13-5х
7у=17+2х
у=(17+2х)/7
Таблицы:
х -5 2 9 х -1 0 1
у 1 3 5 у 18 13 8
Координаты точки пересечения прямых (2; 3)
Решение системы уравнений (2; 3)
Система уравнений имеет одно решение.
2)х+2у=5
-2х-4у= -10
Выразим х через у в первом уравнении, подставим выражение во второе уравнение и вычислим у:
х=5-2у
-2(5-2у)-4у= -10
-10+4у-4у= -10
4у-4у= -10+10
0=0
Система уравнений имеет бесчисленное множество решений.
Графически:
х+2у=5
-2х-4у= -10
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
х+2у=5 -2х-4у= -10
2у=5-х -4у= -10+2х
у=(5-х)/2 4у=10-2х
у=(10-2х)/4
Таблицы:
х -1 0 1 х -1 0 1
у 3 2 1 у 3 2 1
Графики функций полностью совпадают, "сливаются".
Система уравнений имеет бесчисленное множество решений.
3)3х-у=2
3х-у=3
Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:
-у=2-3х
у=3х-2
3х-(3х-2)=3
3х-3х+2=3
2=3
Система уравнений не имеет решений.
Графически:
3х-у=2
3х-у=3
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
а масса второго раствора равна у г.
По условию, х+у=800 (г) -это первое уравнение системы.
35% от 800 г равны 800*35%:100%=280 г
Масса 20% первого раствора равны 0,2х г,
а 40% второго раствора равны 0,4у г.
Получаем, 0,2х+0,4у=280 (г) - это второе уравнение системы
Решим систему уравнений:
{x+y=800
{0,2x+0,4y=280
{x=800-y
{0,2(800-y)+0,4y=280
160-0,2y+0,4y=280
0,2y=120
y=120:0,2
y=600 (г)-масса второго раствора
х=800-600=200(г)-масса первого раствора
ответ: Необходимо взять 200 г первого и 600 г второго раствора
1)Решение системы уравнений (2; 3)
Система уравнений имеет одно решение.
2)Система уравнений имеет бесчисленное множество решений.
3)Система уравнений не имеет решений.
Объяснение:
1)2х-7у= -17
5х+у=13
Выразим у через х во втором уравнении, подставим выражение в первое уравнение и вычислим х:
у=13-5х
2х-7(13-5х)= -17
2х-91+35х= -17
37х= -17+91
37х=74
х=74/37
х=2
у=13-5х
у=13-5*2
у=3
Решение системы уравнений (2; 3)
Система уравнений имеет одно решение.
Графически:
2х-7у= -17
5х+у=13
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
2х-7у= -17 5х+у=13
-7у= -17-2х у=13-5х
7у=17+2х
у=(17+2х)/7
Таблицы:
х -5 2 9 х -1 0 1
у 1 3 5 у 18 13 8
Координаты точки пересечения прямых (2; 3)
Решение системы уравнений (2; 3)
Система уравнений имеет одно решение.
2)х+2у=5
-2х-4у= -10
Выразим х через у в первом уравнении, подставим выражение во второе уравнение и вычислим у:
х=5-2у
-2(5-2у)-4у= -10
-10+4у-4у= -10
4у-4у= -10+10
0=0
Система уравнений имеет бесчисленное множество решений.
Графически:
х+2у=5
-2х-4у= -10
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
х+2у=5 -2х-4у= -10
2у=5-х -4у= -10+2х
у=(5-х)/2 4у=10-2х
у=(10-2х)/4
Таблицы:
х -1 0 1 х -1 0 1
у 3 2 1 у 3 2 1
Графики функций полностью совпадают, "сливаются".
Система уравнений имеет бесчисленное множество решений.
3)3х-у=2
3х-у=3
Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:
-у=2-3х
у=3х-2
3х-(3х-2)=3
3х-3х+2=3
2=3
Система уравнений не имеет решений.
Графически:
3х-у=2
3х-у=3
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
3х-у=2 3х-у=3
-у=2-3х у=3-3х
у=3х-2 у=3х-3
Таблицы:
х -1 0 1 х -1 0 1
у -5 -2 1 у -6 -3 0
Графики функций параллельны.
Система уравнений не имеет решений.