Возможно, что есть и другие варианты. Хотя я сколько ни ломала голову, так и не смогла придумать ничего, кроме такого вот варианта решения этой задачки. У меня получилось вот что. - Если 6 детей несут по 1/4 хлеба - получается 6/4 хлеба - то есть1 (или 4/4) и половинку (или 2/4) хлеба. Всего полтора хлеба. А 1 женщина несёт половину (или 1/2) хлеба. Получается, что дети и женщина вместе несут - 4/4 + 2/4 + 1/2 (или 2/4) = 8/4 = 2 целых хлеба в сумме. А 5 мужчин несут по 2 хлеба - то есть, всего 10 хлебов. Тогда получается, что хлебов - 10 + 2 = 12. И людей получается - 6 детей + 1 женщина + 5 мужчин = 12 человек. Так вроде все условия задачки сходятся? Может, кто-то ещё какие-то варианты нашёл?
ответ: ymin=y(-4)=-164
Объяснение:
Найдите наименьшее значение функции у = х³ - 5х² + 8х + 12 на отрезке [-4;1].
Найдем значение функции на границах отрезка
у(-4) = (-4)³ - 5·(-4)² +8·(-4) + 12 = -64 - 80 - 32 + 12 = -164
у(1) = 1³ - 5·1² +8·1 + 12 = 1 - 5 + 8 + 12 = 16
Найдем производную функции
у' =(х³ - 5х² + 8х + 12)' = (х³)' - (5х²)' + (8х)' + (12)' = 3x² - 10x +8
Найдем критические точки приравняв производную к нулю
3x² - 10x + 8 = 0
D = (-10)² - 4·3·8 = 100 - 96 = 4
x₁ = (10-2)/(2·3) = 8/6 = 4/3 ≈ 1,33
x₂ = (10+2)/(2·3) = 12/6 = 2
Найденные точки не входят в данный отрезок поэтому значения функции в них находить не будем.
Функция на отрезке монотонна и возрастает. Минимальное значение функции находится в точке x = -4 y(-4) = -164