ab - ac - 4b + 4c = a(b - c) - 4(b - c) = (b - c)(a - 4).
Как выполняется: ищем что-то одинаковое у нескольких слагаемых. Так, мы увидели одинаковый сомножитель a в слагаемых ab и -ac, одинаковый сомножитель 4 у слагаемых -4b и 4c. Вынесли их за скобку и заметили, что появились две одинаковые скобки: (b - c) – которые являются сомножителями для a(b - c), -4(b - c). Выносим за скобку его и получаем разложение.
То есть вам нужно найти что-то одинаковое у нескольких слагаемых и вынести это за скобку.
Пусть x₁и x₂ - нули квадратичной функции y = 4x² - (3a + 2) x + a - 1. Найти, при каких значениях выполняется неравенство x₁ < 3 < x₂.
Решение.
Так как коэффициент перед x² больше 0(4>0), то ветви параболы направлены вверх. Точки x₁ и x₂ определяют нули функции в которых значение функции равно нулю(y(x₁) = y(x₂) = 0).
Исходя из этого можно сделать вывод, что при х = 3 значение функции меньше нуля.
ab - ac - 4b + 4c = a(b - c) - 4(b - c) = (b - c)(a - 4).
Как выполняется: ищем что-то одинаковое у нескольких слагаемых. Так, мы увидели одинаковый сомножитель a в слагаемых ab и -ac, одинаковый сомножитель 4 у слагаемых -4b и 4c. Вынесли их за скобку и заметили, что появились две одинаковые скобки: (b - c) – которые являются сомножителями для a(b - c), -4(b - c). Выносим за скобку его и получаем разложение.
То есть вам нужно найти что-то одинаковое у нескольких слагаемых и вынести это за скобку.
ответ: (b - c)(a - 4).
Пусть x₁и x₂ - нули квадратичной функции y = 4x² - (3a + 2) x + a - 1. Найти, при каких значениях выполняется неравенство x₁ < 3 < x₂.
Решение.
Так как коэффициент перед x² больше 0(4>0), то ветви параболы направлены вверх. Точки x₁ и x₂ определяют нули функции в которых значение функции равно нулю(y(x₁) = y(x₂) = 0).
Исходя из этого можно сделать вывод, что при х = 3 значение функции меньше нуля.
y(3) < 0
y(3) = 4·3² - (3a + 2)·3 + a - 1 = 36 - 9a - 6 + a - 1 = 29 - 8a
29 - 8a < 0
8a > 29
a > 3,625
Поэтому для функции y = 4x² - (3a + 2) x + a - 1 неравенство x₁ < 3 < x₂ истинно для всех значених a∈(3,625;+∞)
ответ: a∈(3,625;+∞)