Нужно найти наименьшее натуральное число, которое при умножении на 2 даст полный квадрат, а при умножении на 3 - полный куб. Обозначим искомое число за . Любое число можно представить в виде произведения простых множителей. Запишем: , где - некоторые натуральные числа. По условию, число является полным квадратом, значит и - четные числа, а - полный квадрат. Аналогично, число является полным кубом, значит и делятся на 3, а - полный куб. Легко видеть, что наименьшие возможные значения это , значит .
Обозначим искомое число за . Любое число можно представить в виде произведения простых множителей. Запишем:
, где - некоторые натуральные числа.
По условию, число является полным квадратом, значит и - четные числа, а - полный квадрат. Аналогично, число является полным кубом, значит и делятся на 3, а - полный куб.
Легко видеть, что наименьшие возможные значения это , значит .
а)x²-2|x|+1=0
x²-2x+1=0 , x≥0
x²-2(-x)+1=0 , x≤0
x=1,x≥0
x=-1 , x≤0
x=1
x=-1
x₁=-1 , x₂=1
б)(x+1)²-6|x+1|+9=0
t²-6|t|+9=0
t=3
t=-3
x+1=3
x+1=-3
x=2
x=-4
x₁=-4 , x₂=2
в)x³+|x|=0
x³-x=0 , x≥0
x³-x=0 , x≤0
x=0
x∉R , x≥0
x=0
x=1 , x≤0
x=-1
x=0
x=-1
x₁=-1 , x₂=0
г)|x|+x+|x|×x=0
x+x+x×x=0 , x≥0
-x+x-x×x=0 , x≤0
x=0
x=-2 , x≥0
x=0 , x ≤0
x=0
x∈∅
x=0
д)|x|×x-x+2|x|-2=0
x×x-x+2x-2x-2-2=0 , x≥0
-x×x-x+2×(-x)-2=0 , x≤0
x=1
x=2 , x≥0
x=-1
x=-2 , x≤0
x=1
x=-2
x=-1
x₁=-2 , x₂=-1, x₃=1
е)x²+x+1=|x|⁰
x²+x+1=|x|⁰ , x≠0
x²+x+1=1
x²+x=0
x×(x+1)=0
x=0
x+1=0
x=0
x=-1 , x≠0
x=-1