В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
demon998
demon998
31.05.2023 12:28 •  Алгебра

Ао со з
3. відрізки ав і сd перетинаються в точці 0,
, ac =6см.
ob od 51
знайдіть довжину відрізка db.

Показать ответ
Ответ:
thiiagooBR
thiiagooBR
24.05.2021 07:16

ответ: два измерения ≈ 8,14, третье ≈ 4,07.

Объяснение: Вместимость -  то же, что и объем.

Объем прямоугольного параллелепипеда находится по формуле V = abc, где a,b,c - его измерения.

Так как основание - квадрат, то два измерения - пусть, к примеру, а и b, - равны ⇒ V = a²c.   а²с = 270 ⇒ с = .

Металл, очевидно, тратят на изготовление поверхности прямоугольного параллелепипеда. Площадь основания равна а². Площадь боковой грани равна . Боковых граней у нас 4, а основание - одно (Так как по условию верх открытый). Поэтому полная поверхность нашего параллелепипеда задается  следующей функцией: , где а > 0.

Найдем производную данной функции:

Найдем критические точки функции:

Точка а ≈ 8, 14 - точка минимума. Следовательно, при а ≈ 8,14 площадь поверхности параллелепипеда будет минимальной, и на него затратят минимальное кол-во металла.

b = a ≈ 8,14. Найдем величину c:

0,0(0 оценок)
Ответ:
ProKingcool
ProKingcool
11.10.2020 09:00

а) Всего все возможных исходов: C^4_{25}C254

Всего мальчиков 25-15=10. Три юноши и одна девушка могут выиграть 4 билета Всего благоприятных событий: C^3_{10}C^1_{15}=15C^3_{10}C103C151=15C103

Вероятность того, что среди обладателей билетов окажутся 3 юноши 1 девушка равна \dfrac{15C^3_{10}}{C^4_{15}}C15415C103

б) Билеты могут получить хотя бы 1 юноша, то есть это можно рассматривать как 1 юноша и 3 девушки или 2 юноша и 2 девушки или 3 юноша и 1 девушка или 4 юноша и 0 девушек. Всего вариантов получить 4 билета может выиграть хотя бы 1 юноша Вероятность того, что среди обладателей билетов окажутся хотя бы 1 юноша равна \dfrac{10C^3_{15}+C^2_{10}C^2_{15}+15C^3_{10}+C^4_{10}C^0_{15}}{C^4_{25}}C25410C153+C102C152+15C103+C104C150

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота