Одночленом называется выражение, которое содержит числа, натуральные степени переменных и их произведения, и при этом не содержит никаких других действий с этими числами и переменными.
Одночлен называется представленным в стандартном виде , если он представлен в виде произведения числового множителя на первом месте и степеней различных переменных. Числовой множитель у одночлена стандартного вида называется коэффициентом одночлена, сумму показателей степени переменных называют степенью одночлена.
В решении.
Объяснение:
Объяснение:
Одночленом называется выражение, которое содержит числа, натуральные степени переменных и их произведения, и при этом не содержит никаких других действий с этими числами и переменными.
Одночлен называется представленным в стандартном виде , если он представлен в виде произведения числового множителя на первом месте и степеней различных переменных. Числовой множитель у одночлена стандартного вида называется коэффициентом одночлена, сумму показателей степени переменных называют степенью одночлена.
Укажите степень одночлена −9x⁵y⁷.
Степень одночлена: 5+7=12.
Объяснение:
А) 5x^3 - 3x^2 - 3x + 5 = 0
5x^3 + 5 - 3x^2 - 3x = 0
5(x^3 + 1) - 3x(x + 1) = 0
5(x + 1)(x^2 - x + 1) - 3x(x + 1) = 0
(x + 1)(5x^2 - 5x + 5 - 3x) = 0
(x + 1)(5x^2 - 8x + 5) = 0
x + 1 = 0 => x = -1
5x^2 - 8x + 5 = 0
D = 8^2 - 4 * 5 * 5 = 64 - 100 = -36
∅
ответ: x = -1
Б) (x + 1/x)^2 - 5(x + 1/x) + 6 = 0
t = x + 1/x
t^2 - 5t + 6 = 0
D = 5^2 - 4 * 1 * 6 = 25 - 24 = 1
t1 = (5 + 1) / 2 = 6/2 = 3
t2 = (5 - 1) / 2 = 4/2 = 2
x + 1/x = 3
x^2 - 3x + 1 = 0
D = 3^2 - 4 * 1 * 1 = 9 - 4 = 5
x1 = (3 - √5) / 2
x2 = (3 + √5) / 2
x + 1/x = 2
x^2 - 2x + 1 = 0
D = 2^2 - 4 * 1 * 1 = 4 - 4 = 0
x = 2 / 2 = 1
ответ: x1 = (3 - √5) / 2 ; x2 = 1 ; x3 = (3 + √5) / 2.