Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
alekandra78zubo
03.10.2020 05:47 •
Алгебра
Арифметическая прогрессия a^17+a^20=35
a^16*a^21=150
a^1-? d-?
нужно
Показать ответ
Ответ:
kirill1s
15.07.2022 13:48
0,2х + 0,2х²·(8х - 3) = 0,4х²·(4х - 5)
0,2x·(1 + 0,2x·(8x - 3)) = 0,4x²·(4x - 5)
0,2x·(1 + 0,2x·(8x - 3)) - 0,4x²·(4x - 5) = 0
0,2x·(1 + 1,6x² - 0,6x) - 0,2x·2x·(4x - 5)=0
0,2x·(1 + 1,6x² - 0,6x - 8x² + 10x) = 0
0,2x·(1 + 1,6x² - 0,6x - 8x² + 10x) = 0
0,2x·(1 - 6,4x² + 9,4x) = 0
x=0 или 6,4х² - 9,4х - 1 = 0
64х² - 94 х - 10 = 0
D=94²+4·64·10=8836+2560=11396
x=(94-√11396)/128 >0 или х=(94+√11396)/128 >0
x=0 - меньший корень уравнения
0,0
(0 оценок)
Ответ:
Studio1
21.11.2021 06:27
Так как косинус четная функция, то
cos(π/2-3x)= cos (3x-π/2)
Решаем уравнение:
cos ( 3x-π/2) = √3/2
3x - π/2 = ± arccos (√3/2) + 2π·n, n∈ Z
3x - π/2 = ± (π/6) + 2π·n, n∈ Z
3x = π/2 ± (π/6) + 2π·n, n∈ Z
x = π/6 ± (π/12) + (2π/3)·n, n∈ Z
или
вычитая получим: складывая получим:
х₁= π/2 - (π/6) + (2π/3)·n, n∈ Z х₂= π/2 + (π/6) + (2π/3)·n, n∈ Z
х₁= π/3 + (2π/3)·n, n∈ Z х₂=2π/3 + (2π/3)·n, n∈ Z
при n =0 получаем корни
π/3 и 2π/3
при n = 1
(π/3) + (2π\3) = π и (2π/3) + (2π/3)= 4π/3
при n = 2
(π/3) + (2π/3)·2=(5π\3) и ( 2π/3) +(2π/3)·2=(6π\3)=2π
3π/2 <(5π/3) <2π
3π/2 < 2π≤2π
ответ. На [3π/2; 2π] два корня: (5π.3) и 2π
0,0
(0 оценок)
Популярные вопросы: Алгебра
tt5tt5291
23.04.2023 13:07
решить задание по алгебре. Надо решить первое задание и третье под цифрами 1 и 2....
ангел815
07.05.2022 02:53
Определите коэффициент при x^4 после приведения к стандартному виду многочлена (x^3-5x+2) (x^4-9x^3-x+8) варианты ответа:1. среди ответов нет верного 2. 463. 474. 44...
neliakunik
04.05.2021 03:27
(m-3)2-(m-2)(m+2) при m=-2,5 найди значение выражения...
эдики
04.05.2021 03:27
Как решить неравенство с модулем: |5х-6| 3...
nastyshabos
29.10.2020 15:32
Найдите значение выражения: (0,6 в степени log12 по основанию 0,6)-14...
UNICORN1161
24.05.2023 15:35
Какое соотношение больше 1 к 45 или 1 к 200...
даринкал
24.05.2023 15:35
Мария петровна положила в банк. 1 500 000 рублей под 7% годовых. схема начисления процентов следующая: каждый год банк начисляет проценты на имеющуюся сумму вклада...
danilp7
24.05.2023 15:35
(а-1)(а+1)(а^2-а+1)(а^2+а+1)(а^6+1)(а^12+1)...
20Lorans03
24.05.2023 15:35
Подобные слагаемые 2а+3а 7х-15х -17-3у а-b-3а-11b 2х+8у-2х-8у+9...
Нютикккк
03.03.2021 00:22
3. а)найдите координаты точки пересечения графика линейной функции у = - 2х + 6 с осями координат....
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
0,2x·(1 + 0,2x·(8x - 3)) = 0,4x²·(4x - 5)
0,2x·(1 + 0,2x·(8x - 3)) - 0,4x²·(4x - 5) = 0
0,2x·(1 + 1,6x² - 0,6x) - 0,2x·2x·(4x - 5)=0
0,2x·(1 + 1,6x² - 0,6x - 8x² + 10x) = 0
0,2x·(1 + 1,6x² - 0,6x - 8x² + 10x) = 0
0,2x·(1 - 6,4x² + 9,4x) = 0
x=0 или 6,4х² - 9,4х - 1 = 0
64х² - 94 х - 10 = 0
D=94²+4·64·10=8836+2560=11396
x=(94-√11396)/128 >0 или х=(94+√11396)/128 >0
x=0 - меньший корень уравнения
cos(π/2-3x)= cos (3x-π/2)
Решаем уравнение:
cos ( 3x-π/2) = √3/2
3x - π/2 = ± arccos (√3/2) + 2π·n, n∈ Z
3x - π/2 = ± (π/6) + 2π·n, n∈ Z
3x = π/2 ± (π/6) + 2π·n, n∈ Z
x = π/6 ± (π/12) + (2π/3)·n, n∈ Z
или
вычитая получим: складывая получим:
х₁= π/2 - (π/6) + (2π/3)·n, n∈ Z х₂= π/2 + (π/6) + (2π/3)·n, n∈ Z
х₁= π/3 + (2π/3)·n, n∈ Z х₂=2π/3 + (2π/3)·n, n∈ Z
при n =0 получаем корни
π/3 и 2π/3
при n = 1
(π/3) + (2π\3) = π и (2π/3) + (2π/3)= 4π/3
при n = 2
(π/3) + (2π/3)·2=(5π\3) и ( 2π/3) +(2π/3)·2=(6π\3)=2π
3π/2 <(5π/3) <2π
3π/2 < 2π≤2π
ответ. На [3π/2; 2π] два корня: (5π.3) и 2π