Проведем отрезки OB и OC, как показано на рисунке. Расстоянием от точки до прямой является длина перпендикуляра, проведенного к прямой. Поэтому, OE перпендикулярен AB, а OF перпендикулярен CD. Точки E и F делят свои хорды пополам (по свойству хорды) Получается, что треугольники OEB и OCF - прямоугольные, EB=AB/2 и CF=CD/2. По теореме Пифагора: OB2=OE2+EB2 OB2=242+(20/2)2 OB2=576+100=676 OB=26 OB=OC=26 (т.к. OB и OC - радиусы окружности) По теореме Пифагора: OC2=CF2+FO2 OC2=(CD/2)2+FO2 262=(CD/2)2+102 676=(CD/2)2+100 (CD/2)2=576 CD/2=24 CD=48 ответ: CD=48
Пусть скорость мотоциклиста x км/ч, тогда скорость велосипедиста (x–45) км/ч.
Расстояние между городами равно 60 км, тогда время в пути, которое затратили мотоциклист и велосипедист, равно соответственно 60/x часа и 60/(45 – x) часа.
Так как велосипедист был в пути на 3 часа дольше, чем мотоциклист.
Расстоянием от точки до прямой является длина перпендикуляра, проведенного к прямой. Поэтому, OE перпендикулярен AB, а OF перпендикулярен CD. Точки E и F делят свои хорды пополам (по свойству хорды)
Получается, что треугольники OEB и OCF - прямоугольные, EB=AB/2 и CF=CD/2.
По теореме Пифагора:
OB2=OE2+EB2
OB2=242+(20/2)2
OB2=576+100=676
OB=26
OB=OC=26 (т.к. OB и OC - радиусы окружности)
По теореме Пифагора:
OC2=CF2+FO2
OC2=(CD/2)2+FO2
262=(CD/2)2+102
676=(CD/2)2+100
(CD/2)2=576
CD/2=24
CD=48
ответ: CD=48
Решение
Пусть скорость мотоциклиста x км/ч, тогда скорость велосипедиста (x–45) км/ч.
Расстояние между городами равно 60 км, тогда время в пути, которое затратили мотоциклист и велосипедист, равно соответственно 60/x часа и 60/(45 – x) часа.
Так как велосипедист был в пути на 3 часа дольше, чем мотоциклист.
Составим и решим уравнение:
60/(x – 45) - 60/x = 3
x ≠ 45, x ≠ 0
(60x – 60x + 2700 – 3x^2 + 135x) / x(x – 45) = 0
x² – 45x – 900 = 0
x₁= - 15 не удовлетворяет условию задачи
x₂ = 60
Итак, скорость мотоциклиста 60 км/ч,
60 - 45 = 15 км/ч. - скорость велосипедиста
ответ: 15 км/ч.