) Найдите наибольшее значение функции y=x^3-12x+24 на отрезке [-4;0] y'=3x^2-12 y'=0 x=2 x=-2 y''=6x y(2)- минимум y(-2) max y(0)=24 y(-2)=-8+24+24=40 y(-4)=-64+24+48=8 ответ y(-2)=40 2) Найдите наибольшее значение функции y=(4x^2+49)/x на отрезке [-4;-1] y'=4-49/x^2 y'=0 4x^2=49 x^2=49/4 x1=7/2 x2=-7/2 y(-1)=-4-49=-53 y(-3,5)=-14-14=-28 ответ -28 3) Найдите наибольшее значение функции y=(4x-3)^2*(x+6)-9 на отрезке [-6;3] y'=8(x+6)(4x-3)+(4x-3)^2=32x^2-144+168x+16x^2+9-24x=48x^2+144x+135>0 y(3)=81*9-9=720
4) Найдите наименьшее значение функции y=6cosx-7x+8 на отрезке [-п/2;0] y'=-6sinx-7 y(0)=6+8=14 наименьшее y(-pi/2)=0+8+7pi/2>14
1. ДАНО Y = x² - 6*x + 5 - уравнение параболы. НАЙТИ Ymin = ? - наименьшее значение. РЕШЕНИЕ Чтобы найти координаты вершины параболы преобразуем уравнение к виду Y=(x - a)² +b Y = (x² - 2*3x + 9) - 9 + 5 = (x-3)² - 4. Вершина параболы: А(3;-4) Ay = - 4 - наименьшее значение - ОТВЕТ Точки пересечения с осями координат можно получить решением квадратного уравнения. D = 16, x1 = 1, x2 = 5 Рисунок к задаче в приложении. 2. График параболы на рис. 2. Корни - х1 = - 1б х2 = 3, вершина А(1;4). Но для решения задачи график не обязателен. Достаточно подставить значение У=3 и решить квадратное уравнение. 3 = - x² + 2*x + 3 - x² + 2*x = - x*(x-2) = 0 ОТВЕТ: х1 = 0, х2 = 2 Рисунок в приложении. 3. Каноническое уравнение параболы: Y= (x-a)² + b. Координаты вершины такой параболы: Ах = - а, Ау = b. Y = (x-3)² - уравнение параболы - дано. Вершина с координатами: А(3;0), и ветви параболы - вверх.∫ Рисунок в приложении.
y'=3x^2-12 y'=0 x=2 x=-2
y''=6x y(2)- минимум y(-2) max
y(0)=24
y(-2)=-8+24+24=40
y(-4)=-64+24+48=8
ответ y(-2)=40
2) Найдите наибольшее значение функции y=(4x^2+49)/x на отрезке [-4;-1]
y'=4-49/x^2 y'=0 4x^2=49 x^2=49/4
x1=7/2 x2=-7/2
y(-1)=-4-49=-53
y(-3,5)=-14-14=-28
ответ -28
3) Найдите наибольшее значение функции y=(4x-3)^2*(x+6)-9 на отрезке [-6;3]
y'=8(x+6)(4x-3)+(4x-3)^2=32x^2-144+168x+16x^2+9-24x=48x^2+144x+135>0
y(3)=81*9-9=720
4) Найдите наименьшее значение функции y=6cosx-7x+8 на отрезке [-п/2;0]
y'=-6sinx-7
y(0)=6+8=14 наименьшее
y(-pi/2)=0+8+7pi/2>14
ДАНО
Y = x² - 6*x + 5 - уравнение параболы.
НАЙТИ
Ymin = ? - наименьшее значение.
РЕШЕНИЕ
Чтобы найти координаты вершины параболы преобразуем уравнение к виду
Y=(x - a)² +b
Y = (x² - 2*3x + 9) - 9 + 5 = (x-3)² - 4.
Вершина параболы: А(3;-4)
Ay = - 4 - наименьшее значение - ОТВЕТ
Точки пересечения с осями координат можно получить решением квадратного уравнения.
D = 16, x1 = 1, x2 = 5
Рисунок к задаче в приложении.
2. График параболы на рис. 2. Корни - х1 = - 1б х2 = 3, вершина А(1;4).
Но для решения задачи график не обязателен. Достаточно подставить значение У=3 и решить квадратное уравнение.
3 = - x² + 2*x + 3
- x² + 2*x = - x*(x-2) = 0
ОТВЕТ: х1 = 0, х2 = 2
Рисунок в приложении.
3. Каноническое уравнение параболы: Y= (x-a)² + b.
Координаты вершины такой параболы: Ах = - а, Ау = b.
Y = (x-3)² - уравнение параболы - дано.
Вершина с координатами: А(3;0), и ветви параболы - вверх.∫
Рисунок в приложении.