"атмосферадағы құбылыстар жердің көлбеленуі мен қозғалысына қарай күрделене түседі" сөйлемдегі тіліндегі орфоэпиялық норма қай тұста нақты байқалды? 1)күрделене түседі
2)жердің көлбеуленуі
3)атмосферадағы құбылыстар
4)көлбеуленуі мен қозғалысына қарай.
Для такого задания есть два решения:
самый простой): проверить каждый вариант ответа, подставляя его вместо икса. Если получиться ноль, тогда это и есть корень уравнения.
При : (совпало)При : (совпало)При : (совпало).решить это уравнение, зная правило, что если при умножении чисел или выражений получается ноль, то хотя бы одно из них должно быть равно нулю:
(в вариантах ответа есть такой корень) (в вариантах ответа есть такой корень) (в вариантах ответа есть такой корень)ответ: корнем уравнения являются числа а) 7; б) -3; в) 0.
сумма корней квадратного трехчлена равна его второму коэффициенту с противоположным знаком, а произведение - свободному члену .
в случае квадратного уравнения формулы виета имеют вид:
значимость теоремы виета заключается в том, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие симметричные многочлены от двух переменных и . теорема виета позволяет угадывать целые корни квадратного трехчлена.
. используя теорему виета, найти корни уравнения
решение. согласно теореме виета, имеем, что
подбираем значения и , которые удовлетворяют этим равенствам. легко видеть, что им удовлетворяют значения
и
ответ. корни уравнения ,
обратная теорема виета
если числа и удовлетворяют соотношениям , то они удовлетворяют квадратному уравнению , то есть являются его корнями.
. зная, что числа и - корни некоторого квадратного уравнения, составить само это уравнение.
решение. пусть искомое квадратное уравнение имеет вид:
тогда, согласно теореме виета, его коэффициенты связаны с корнями следующими соотношениями:
тогда
то есть искомое уравнение
ответ.
общая формулировка теоремы виета
если - корни многочлена (каждый корень взят соответствующее его кратности число раз), то коэффициенты выражаются в виде симметрических многочленов от корней, а именно:
иначе говоря, произведение равно сумме всех возможных произведений из корней.