1) 11
2) 4
Объяснение:
1) 20 + 8х - х² > 0
- х²+8x+20 = 0
D = 64+80 = 144 =
x1 = x2 =
- -2 + 10 -
Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î
Нам подходит промежуток (-2; 10)
Определим целые числа в промежутке: -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Всего целых решений: 11
2) 4x² - 17x + 4 ≤ 0
4x² - 17x + 4 = 0
D = 289-64 = 225 =
+ - 4 +
Нам подходит промежуток [; 4]
Определим целые числа в промежутке: 1, 2, 3, 4
Всего целых решений: 4
x² + (m - 1)x + m² - 1,5 = 0
По теореме Виета :
x₁ + x₂ = - (m - 1)
x₁ * x₂ = m² - 1,5
x₁² + x₂² = (x₁ + x₂)² - 2x₁ * x₂ = (- (m - 1))² - 2 * (m² - 1,5) = m² - 2m + 1 - 2m² + 3 = - m² - 2m + 4
Найдём производную полученного выражения :
(- m² - 2m + 4)'= -2m - 2
Приравняем к нулю и найдём нули производной :
- 2m - 2 = 0
m + 1 = 0
m = - 1
Отметим полученное число на числовой прямой и найдём знаки производной на промежутках, на которые разбивается числовая прямая :
+ -
- 1
↑ max ↓
ответ : при m = - 1 сумма корней уравнения наибольшая
1) 11
2) 4
Объяснение:
1) 20 + 8х - х² > 0
- х²+8x+20 = 0
D = 64+80 = 144 =
x1 = x2 =
- -2 + 10 -
Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î
Нам подходит промежуток (-2; 10)
Определим целые числа в промежутке: -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Всего целых решений: 11
2) 4x² - 17x + 4 ≤ 0
4x² - 17x + 4 = 0
D = 289-64 = 225 =
x1 = x2 =
+ - 4 +
Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î
Нам подходит промежуток [; 4]
Определим целые числа в промежутке: 1, 2, 3, 4
Всего целых решений: 4
x² + (m - 1)x + m² - 1,5 = 0
По теореме Виета :
x₁ + x₂ = - (m - 1)
x₁ * x₂ = m² - 1,5
x₁² + x₂² = (x₁ + x₂)² - 2x₁ * x₂ = (- (m - 1))² - 2 * (m² - 1,5) = m² - 2m + 1 - 2m² + 3 = - m² - 2m + 4
Найдём производную полученного выражения :
(- m² - 2m + 4)'= -2m - 2
Приравняем к нулю и найдём нули производной :
- 2m - 2 = 0
m + 1 = 0
m = - 1
Отметим полученное число на числовой прямой и найдём знаки производной на промежутках, на которые разбивается числовая прямая :
+ -
- 1
↑ max ↓
ответ : при m = - 1 сумма корней уравнения наибольшая