Дана система уравнений:
{2x² - 3xy + y² = 0,
{y² - x² = 12.
Из второго уравнения получаем y² = x² + 12 и подставим в первое.
2x² - 3xy + x² + 12 = 0,
3x² - 3xy + 12 = 0, сократим на 3:
x² - xy + 4 = 0
x(x - y) = -4 отсюда x - y = -4/x или y - x = 4/x.
Второе уравнение разложим как разность квадратов.
y² - x² = (y - x)(y + x) = 12.
Разделим почленно 2 уравнения.
(y - x)(y + x) = 12.
y - x = 4/x, получим y + x = 12/(4/x) = 3x или y = 3x - x = 2x.
Подставим во второе уравнение.
(2x)² - x² = 12,
4x² - x² = 12,
3x² = 12. x = +-√(12/3) = +-√4 = +-2.
y = 2x = 2*(+-2) = +-4.
ответ: x1 = -2, x2 = 2.
y1 = -4, y2 = 4.
Дана система уравнений:
{2x² - 3xy + y² = 0,
{y² - x² = 12.
Из второго уравнения получаем y² = x² + 12 и подставим в первое.
2x² - 3xy + x² + 12 = 0,
3x² - 3xy + 12 = 0, сократим на 3:
x² - xy + 4 = 0
x(x - y) = -4 отсюда x - y = -4/x или y - x = 4/x.
Второе уравнение разложим как разность квадратов.
y² - x² = (y - x)(y + x) = 12.
Разделим почленно 2 уравнения.
(y - x)(y + x) = 12.
y - x = 4/x, получим y + x = 12/(4/x) = 3x или y = 3x - x = 2x.
Подставим во второе уравнение.
(2x)² - x² = 12,
4x² - x² = 12,
3x² = 12. x = +-√(12/3) = +-√4 = +-2.
y = 2x = 2*(+-2) = +-4.
ответ: x1 = -2, x2 = 2.
y1 = -4, y2 = 4.