V - знак корня 1)V(x+9) =x-3 ОДЗ: {x+9>=0; x>=-9 {x-3>=0; x>=3 Решение ОДЗ: x>=3 Т.к. обе части уравнения неотрицательны, возведем их в квадрат: x+9= (x-3)^2 x+9= x^2-6x+9 x+9-x^2+6x-9=0 -x^2+7x=0 x^2-7x=0 x(x-7)=0 x=0; x=7 x=0 нам не подходит по ОДЗ ответ:{7} 2)V(x-2)= V(x^2-4) ОДЗ: {x-2>=0; x>=2 {x^2-4>=0; x<=-2, x>=2 Решение ОДЗ: x>=2 Возведем в квадрат обе части: x-2=x^2-4 x-2-x^2+4=0 -x^2+x+2=0 x^2-x-2=0 D=(-1)^2-4*1*(-2)=9 x1=(1-3)/2=-1 - не подходит по ОДЗ x2=(1+3)/2=2 ответ:{2} 3)V(12+x^2) <6-x В левой части неравенства стоит корень,принимающий только неотрицательные значения. Следовательно, и правая часть должна быть положительной. ОДЗ: {12+x^2>=0 при x e R {6-x>0, x<6 Решение ОДЗ: x<6 Возведем в квадрат обе части: 12+x^2<(6-x)^2 12+x^2<36-12x+x^2 12+x^2-36+12x-x^2<0 12x-24<0 12x<24 x<2 С учетом ОДЗ: x <2
1)V(x+9) =x-3
ОДЗ:
{x+9>=0; x>=-9
{x-3>=0; x>=3
Решение ОДЗ: x>=3
Т.к. обе части уравнения неотрицательны, возведем их в квадрат:
x+9= (x-3)^2
x+9= x^2-6x+9
x+9-x^2+6x-9=0
-x^2+7x=0
x^2-7x=0
x(x-7)=0
x=0; x=7
x=0 нам не подходит по ОДЗ
ответ:{7}
2)V(x-2)= V(x^2-4)
ОДЗ:
{x-2>=0; x>=2
{x^2-4>=0; x<=-2, x>=2
Решение ОДЗ: x>=2
Возведем в квадрат обе части:
x-2=x^2-4
x-2-x^2+4=0
-x^2+x+2=0
x^2-x-2=0
D=(-1)^2-4*1*(-2)=9
x1=(1-3)/2=-1 - не подходит по ОДЗ
x2=(1+3)/2=2
ответ:{2}
3)V(12+x^2) <6-x
В левой части неравенства стоит корень,принимающий только неотрицательные значения. Следовательно, и правая часть должна быть положительной.
ОДЗ:
{12+x^2>=0 при x e R
{6-x>0, x<6
Решение ОДЗ: x<6
Возведем в квадрат обе части:
12+x^2<(6-x)^2
12+x^2<36-12x+x^2
12+x^2-36+12x-x^2<0
12x-24<0
12x<24
x<2
С учетом ОДЗ: x <2
ОДЗ: система: -11tgx ≥ 0
x∋ (-π/2 + πn; π/2 + πn)
Произведение равно нулю, когда хотя бы один из множителей равен нулю, а второй при этом существует.
2cos²x - cosx = 0
⇒ (2cos²x - cosx)√(-11tgx) = 0 ⇔ система:
-11tgx = 0
Решим первое уравнение системы:
2cos²x - cosx = 0 ⇔ cosx (2cosx - 1) = 0 ⇔ система: cosx = 0 ⇔ cosx = 0 ⇔
2cosx - 1 = 0 cosx = 1/2
система: x = π/2 + πn, n∋Z
x = ±π/3 + 2πn, n∋Z.
решим второе уравнение системы:
-11tgx = 0 ⇔ tgx = 0 ⇒ x = πn, n ∈Z.
x = π/2 + πn, n∋Z - не удовлетворяет ОДЗ: x∋ (-π/2 + πn; π/2 + πn) .
⇒ ответ: ±π/3 + 2πn, n∋Z.; πn, n ∈Z.