Обозначим скорость автомобиля через Х км/ч. До встречи с другим автомобилем он путь Х*1=Х км. Следовательно второй автомобиль путь до встречи 100-Х. Время в пути из города в город первого автомобиля равно 100/Х ч. Время в пути из города в город второго автомобиля равно 100/(100-Х). Разница во времени по условию 50 мин или 5,6 ч. Пусть скорость первого больше скорости второго, тогда второй ехал на 50 мин дольше. Составим уравнение. 100/Х+5/6=100/(100-Х). После освобождения от знаменателей получишь квадратное уравнение 60000-600х-600х-500х+5х^2=0. Получаем x^2-340x+12000=0 Находим корни Х1=40, Х2=300. Нам подходит Х=40 к/ч. Скорость второго - 30 км/ч
До встречи с другим автомобилем он путь Х*1=Х км.
Следовательно второй автомобиль путь до встречи 100-Х.
Время в пути из города в город первого автомобиля равно 100/Х ч.
Время в пути из города в город второго автомобиля равно 100/(100-Х).
Разница во времени по условию 50 мин или 5,6 ч. Пусть скорость первого больше скорости второго, тогда второй ехал на 50 мин дольше. Составим уравнение.
100/Х+5/6=100/(100-Х).
После освобождения от знаменателей получишь квадратное уравнение 60000-600х-600х-500х+5х^2=0.
Получаем x^2-340x+12000=0
Находим корни Х1=40, Х2=300. Нам подходит Х=40 к/ч.
Скорость второго - 30 км/ч
Первый рабочий за 3 дня сделал x деталей, по x/3 в день.
Второй рабочий за 4 дня сделал (x+22) деталей, по (x+22)/4 в день.
Первый работал 8 дней, второй работал 11 дней. Вдвоем они сделали
8x/3 + 11(x+22)/4 = 678 деталей.
Умножаем все на 12
32x + 33(x+22) = 678*12
65x + 121*6 = 678*2*6
65x = 6*(1356 - 121) = 6*1235
x=6*1235/65=6*19=114 деталей сделал 1 рабочий за 3 дня, по 38 в день.
x + 22 = 114 + 22 = 136 деталей сделал 2 рабочий за 4 дня, по 34 в день.
ответ: 1 - 38 в день, 304 за 8 дней, 2 - 34 в день, 374 за 11 дней.