Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
ЛераКоролёва13
29.10.2020 08:19 •
Алгебра
b) Сколькими 2. а) Найдите первые три слагаемых в биномиально расии и има за запитгите коофоригиент при к 1) (3x+1) 2) (1- b) Используя результаты предыдущих действий, найдите обичат би разложении (3x+11-х).
Показать ответ
Ответ:
amiralimurodov
02.07.2022 08:41
Пусть скорость второго лыжника x ( км/ч), скорость первого ( x + 3) км/ч - по условию.Расстояние - 30 (км).Находим время первого - 30/(x + 3), второго - 30/x.
Переводим 20 мин. - это 1/3 часа.
Чем больше скорость,чем меньше время,значит,
30/x - 30/( x + 3) = 1/3
(30x + 90 - 30x) / x( x + 3) = 1/3
90/(x² + 3x) = 1/3
x² + 3x - 270 =0
D = b² - 4ac =9 + 1080 = 1089 = 33²
x1= ( - 3 + 33) / 2 = 15
x2 = ( - 3 - 33) / 2 = - 18 - меньше 0-не походит.
Значит,скорость второго лыжника - 15 км/ч
скорость первого 18 км/ч
ответ: 15 км/ч, 18 км/ч
0,0
(0 оценок)
Ответ:
84737263748
03.06.2023 03:58
Решение
log₂ sin(x/2) < - 1
ОДЗ: sinx/2 > 0
2πn < x/2 < π + 2πn, n ∈ Z
4πn < x < 2π + 4πn, n ∈ Z
sin(x/2) < 2⁻¹
sin(x/2) < 1/2
- π - arcsin(1/2) + 2πn < x/2 < arcsin(1/2) + 2πn, n ∈ Z
- π - π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z
- 7π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z
- 7π/3 + 4πn < x < π/3 + 4πn, n ∈ Z
2) log₁/₂ cos2x > 1
ОДЗ:
cos2x > 0
- arccos0 + 2πn < 2x < arccos0 + 2πn, n ∈ Z
- π/2 + 2πn < 2x < π/2 + 2πn, n ∈ Z
- π + 4πn < x < π + 4πn, n ∈ Z
так как 0 < 1/2 < 1, то
cos2x < 1/2
arccos(1/2) + 2πn < 2x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < 2x < 2π - π/3 + 2πn, n ∈ Z
π/6 + πn < x < 5π/6 + πn, n ∈ Z
0,0
(0 оценок)
Популярные вопросы: Алгебра
polilol2018
23.07.2021 13:57
Докажи что значение выражения (x+y-2z)(y-x)-(y+z-2x)(y-z)+(z+x-2y)(x-z)+12 не меняется при любых значениях переменных значение выражения равно...
Goldman2017
31.10.2022 22:24
Найдите наибольшее и наименьшее значение выражения ответ должен быть 1) 3и7; 2) 0 и 6...
irinagerasimova1
07.06.2022 11:41
Өрнекті көбейтіндіге түрлендіріңдер: а) sin2α + cos4α б) cosα − sin6α...
PROMES
14.12.2022 04:33
Какой из данных двучленов можно разложить на множители преминя формулу разности квадрата...
bugrysheve
26.03.2022 01:07
Это касательная к окружности....
DmitriiSh197
02.01.2022 13:34
Используя формулу, заполни данную таблицу.y = 4,2- 65 41 | 3,6 6,7 1,8ГОСТ...
LeylaL11
15.12.2020 20:43
Сократите дробь: 3(a - b)(a -c)/6(a - b)(a -c)...
пати24
16.08.2020 11:23
Решить систему неравенств...
Delishte
18.04.2020 07:28
В один сосуд налили на 2 кг больше воды, чем в другой. При нагревании вода в обоих сосудах получила по 240 ккал, а разность температур достигла 4 градусов. Сколько кг воды...
morcowqwerty
06.09.2021 21:33
Найти корень из 126736 без калькулятора и обьяснить как найти...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
Переводим 20 мин. - это 1/3 часа.
Чем больше скорость,чем меньше время,значит,
30/x - 30/( x + 3) = 1/3
(30x + 90 - 30x) / x( x + 3) = 1/3
90/(x² + 3x) = 1/3
x² + 3x - 270 =0
D = b² - 4ac =9 + 1080 = 1089 = 33²
x1= ( - 3 + 33) / 2 = 15
x2 = ( - 3 - 33) / 2 = - 18 - меньше 0-не походит.
Значит,скорость второго лыжника - 15 км/ч
скорость первого 18 км/ч
ответ: 15 км/ч, 18 км/ч
log₂ sin(x/2) < - 1
ОДЗ: sinx/2 > 0
2πn < x/2 < π + 2πn, n ∈ Z
4πn < x < 2π + 4πn, n ∈ Z
sin(x/2) < 2⁻¹
sin(x/2) < 1/2
- π - arcsin(1/2) + 2πn < x/2 < arcsin(1/2) + 2πn, n ∈ Z
- π - π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z
- 7π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z
- 7π/3 + 4πn < x < π/3 + 4πn, n ∈ Z
2) log₁/₂ cos2x > 1
ОДЗ:
cos2x > 0
- arccos0 + 2πn < 2x < arccos0 + 2πn, n ∈ Z
- π/2 + 2πn < 2x < π/2 + 2πn, n ∈ Z
- π + 4πn < x < π + 4πn, n ∈ Z
так как 0 < 1/2 < 1, то
cos2x < 1/2
arccos(1/2) + 2πn < 2x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < 2x < 2π - π/3 + 2πn, n ∈ Z
π/6 + πn < x < 5π/6 + πn, n ∈ Z