б) В коробку уложены з бан- ки консервов цилиндричес- кой формы так, что они ка- друг друга всех стенок коробки (рис. 1.4). Какую часть объёма коробки занимают банки? Выразите ответ обыкновенной дробью, считая, что л 3. Рис. 1.4
Задание: разложить на множители. множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов. преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители. 1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем: m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
1) Строить график не буду, объяню как решать.
y = -x^2+4x - квадратичная функция
График - парабола, ветви вниз, т.к. перед x^2 отрицательный коэффициент.
Вершина параболы
x(0) = -b/2a = -4/2*(-1) = -4/-2 = 2
y(0) = 4
Таблица значений
x|0|1|2|3|4
y|0|3|4|3|0
Строишь по клеткам параболу.
а)
Значение функции = значение на оси Оу
На оси х находишь точки 0 и 3 проводишь пунктирную линию к графику.
Получается
у наиб = 3
y наим = 0
б) y возрастает на примежутке ( минус бесконечность; 2]
убывает на промежутке [2; +бесконечность);
в)4x^2 - x^2 < 0
4x^2 - x^2 = 0
3x^2 = 0
x^2 = 0
x = 0
x (0; + бесконечность)
множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов.
преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители.
1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем:
m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
4q(p-1)+p-1=4q*(p-1)+(p-1)*1=(p-1)*(4q+1)
4q(p-1)+1-p=4q*(p-1)-1*(p-1)=(p-1)*(4q-1)