A cos²x + B sin x cos x + C sin²x = d A cos²x + B sin x cos x + C sin²x = sin²x + cos²x Переносишь из правой части в левую E cos²x + B sin x cos x + F sin²x = 0 | :cos²x ( или sin²x) Удобнее будет, если в итоге получиться tg x, значит делим на sin²x E tg²x + B tg x + F = 0 tg x = t Et² + Bt + F = 0 А дальше дискриминант, или как там удобнее (Я т.Виета пользуюсь) Получаем корни t, допустим t = H ; O Приравниваем наш tg x к корням tg x = H или tg x = O Это решить уже не составит труда x = arctg(H) + n, n ∈ Z x = arctg(O) + n, n ∈ Z Само собой, если tg = 1, то это /4+n, n ∈ Z, и т.п Это я общее привёл
y=x^3-9x^2+15x-3. y'(x) = 3x^2 - 18x + 15= 0; x^2 - 6x+5 =0; x1 = 1; точка минимума x2 = 5 точка максимума. Функция возрастает на промежутках (-∞ ; 1) U (5 ; ∞ ) Убывает на промежутке (1; ; 5 ) Т\очка х 5 принадлежит заданному интервалу, то есть именно в этой точке и будет наибольшее значение функции. ТОчка минимума не принадлежит заданному интервалу, поэтому надо проверить значения функции на концах интервала. f (2) = 8-9*4+15*2-3= -1; f (7)= 243 - 8* 49 + 15 * 7 - 3= сосчитайте сами и выберите то значение, что побольше.
A cos²x + B sin x cos x + C sin²x = sin²x + cos²x
Переносишь из правой части в левую
E cos²x + B sin x cos x + F sin²x = 0 | :cos²x ( или sin²x)
Удобнее будет, если в итоге получиться tg x, значит делим на sin²x
E tg²x + B tg x + F = 0
tg x = t
Et² + Bt + F = 0
А дальше дискриминант, или как там удобнее (Я т.Виета пользуюсь)
Получаем корни t, допустим t = H ; O
Приравниваем наш tg x к корням
tg x = H или tg x = O
Это решить уже не составит труда
x = arctg(H) + n, n ∈ Z
x = arctg(O) + n, n ∈ Z
Само собой, если tg = 1, то это /4+n, n ∈ Z, и т.п
Это я общее привёл
y'(x) = 3x^2 - 18x + 15= 0;
x^2 - 6x+5 =0;
x1 = 1; точка минимума
x2 = 5 точка максимума.
Функция возрастает на промежутках (-∞ ; 1) U (5 ; ∞ )
Убывает на промежутке (1; ; 5 )
Т\очка х 5 принадлежит заданному интервалу, то есть именно в этой точке и будет наибольшее значение функции.
ТОчка минимума не принадлежит заданному интервалу, поэтому надо проверить значения функции на концах интервала.
f (2) = 8-9*4+15*2-3= -1;
f (7)= 243 - 8* 49 + 15 * 7 - 3= сосчитайте сами и выберите то значение, что побольше.
f (наим) = f(1) = 1 - 9*1 + 15*1 - 3= 4.