б) Вместо знаков ⋆ вставьте такие числа (возможно, различные), чтобы равенство
(х2 + ⋆ ・ х + 3) ・ ( х+ 4) = ( х+ ⋆) ・ (х2 + ⋆ ・ х+ 12)
стало тождеством.
в) Вместо знаков ⋆ вставьте такие числа (возможно, различные), чтобы равенство
(х2 + ⋆ ・ х+ 4) ・ (х + 3) = ( х+ ⋆) ・ (х2 + ⋆ ・ х + 6)
стало тождеством.
х2 -- х в квадрате
1.
(x+7)(x-2)=x² - 2x+7x - 14=x²+5x-14
(y+5)(y²-3y+8)=y³-3y²+8y+5y²-15y+40=y³+2y² - 7y+40
(4c-d)(6c+3d)=24c²+12cd-6cd-3d²=24c²+6cd-3d²
2.
y(a-b)+2(a-b)=(a-b)(y+2)
3x-3y+ax-ay=3(x-y)+a(x-y)=(x-y)(3+a)
3.
xy(x+y)-(x²+y²)(x-2y)=x²y+xy² - (x³-2x²y+xy²-2y³)=x²y+xy²- x³+2x²y-xy²+2y³=2y³+3x²y - x³
4.
a(a-2)-8=(a+2)(a-4)
a²-2a-8=a²-2a-8
0=0 - верно
5.
х дм - ширина прямоугольника
х+12 (дм) - длина
х+12+3 (дм) - увеличенная длина
х+2 (дм) - увеличенная ширина
х(х+12)=(х+12+3)(х+2)-80
х²+12х=х²+17х+30-80
17х-12х=50
5х=50
х=10(дм) - ширина прямоугольника
10+12=22(дм) - длина
Решение
Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T.
Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана,
∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников
AML и MBT (по двум углам: ∠MAL = ∠BTА₁,
∠ALB = ∠LBT — накрест лежащие при параллельных
прямых AC, BT и секущих BL, AT) следует,
что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T,
то AM : MT = 1 : 7.
Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
решение во вкладыше