Сначала разберёмся с выражением в скобках, а конкретно, приведём к общему знаменателю дроби: 1 1 a - 6b - --- = 6b a 6ab
Т.к. происходит деление на получившуюся дробь, то мы её переворачиваем и вместо деления ставим знак умножения: a^2 - 36b^2 6ab a^2 - 36b^2 (a - 6b)*(a + 6b) * = = = a + 6b 6ab a - 6b a - 6b a - 6b
Получившуюся в числителе разность квадратов, мы разложили на множители, после чего сократили.
Теперь можно подставлять конкретные значения: a + 6b = 5 2/17 + 6 * (5 2/17) = (5 2/17) * (1 + 6) = (5 2/17) * 7
1. y= (1/x) + 34
2.(не уверен, но вроде) y=∛(1-х^3 )
3. да
Объяснение:
1. как делается обратная функция: мы выражаем х через у, а потом в получившейся формуле меняем х на у
х-34=1/у
х=(1/у)+34
у=(1/х)+34
2. у^3=1-х^3
х^3=1-у^3
у=∛(1-х^3 )
3. что мы сделаем: мы возьмём произвольные х1 и х2, такие что х1>х2
и приведем к виду функции, если окажется, что выражение с х1 остается большим значит функция увеличивается, нет - наоборот.(не уверен в
х1>х2
-7х1<-7х2
10-7х1<10-7х2
выражение с х2 больше значит функция уменьшается, ответ да.
a^2 - 36b^2 1 1
: ( - )
6ab 6b a
Сначала разберёмся с выражением в скобках, а конкретно, приведём к общему знаменателю дроби:
1 1 a - 6b
- --- =
6b a 6ab
Т.к. происходит деление на получившуюся дробь, то мы её переворачиваем и вместо деления ставим знак умножения:
a^2 - 36b^2 6ab a^2 - 36b^2 (a - 6b)*(a + 6b)
* = = = a + 6b
6ab a - 6b a - 6b a - 6b
Получившуюся в числителе разность квадратов, мы разложили на множители, после чего сократили.
Теперь можно подставлять конкретные значения:
a + 6b = 5 2/17 + 6 * (5 2/17) = (5 2/17) * (1 + 6) = (5 2/17) * 7
Смешанную дробь вынесли за скобки, в скобках получилось 7.
Превращаем смешанную дробь в неправильную:
5*17 + 2 87
5 2/17 = =
17 17
Умножаем неправильную дробь на 7:
87 609 14
* 7 = = 35 ≈ 38.82
17 17 17