Каждую систему уравнений складываем и записываем снизу под фигурной скобкой
1) ПЕРВОЕ
4у - 3х = 11
2у + 3х = 1
6у = 12 |:6
у = 2
Представляем полученное Y в любое из уравнений в системе. Я поставлю в первое:
4у - 3х = 11
4 * 2 - 3х = 11
8 - 3х = 11
-3х = 11 - 8
-3х = -3
х = 1
ответ: х=1; у=2
2) ВТОРОЕ
3х - 7у = 6
4х - 7у = 1
7х = 7
х = 1
3х - 7у = 6
3 * 1 - 7у = 6
3 - 7у = 6
- 7у = 3
у = -3/7
ответ: х=1, у=-3/7
3) ТРЕТЬЕ
-9х + 2у = -8 |*5
5х + 3у = 25 |*9
Если сразу сложим, то получим -4х + 5у = 17 (данным посчитать не выходит) - поэтому сначала придётся домножить на какое-то число и первое, и второе уравнение, чтобы можно было сложить. На 3 и на 2, чтобы получился одинаковый Y, который удобно будет сложить:
-45х + 10у = -40
45х + 27у = 225
Теперь складываем:
37у = 185 |:37
у = 5
Подставляю в любое уравнение. Я в первое (каждую пару пишем в фигурных скобках, я их пробелом разделяю)
Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.
Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).
То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней.
1. х=1, у=2
2. х=1, у=-3/7
3. х=2, у=5
Объяснение:
Каждую систему уравнений складываем и записываем снизу под фигурной скобкой
1) ПЕРВОЕ
4у - 3х = 11
2у + 3х = 1
6у = 12 |:6
у = 2
Представляем полученное Y в любое из уравнений в системе. Я поставлю в первое:
4у - 3х = 11
4 * 2 - 3х = 11
8 - 3х = 11
-3х = 11 - 8
-3х = -3
х = 1
ответ: х=1; у=2
2) ВТОРОЕ
3х - 7у = 6
4х - 7у = 1
7х = 7
х = 1
3х - 7у = 6
3 * 1 - 7у = 6
3 - 7у = 6
- 7у = 3
у = -3/7
ответ: х=1, у=-3/7
3) ТРЕТЬЕ
-9х + 2у = -8 |*5
5х + 3у = 25 |*9
Если сразу сложим, то получим -4х + 5у = 17 (данным посчитать не выходит) - поэтому сначала придётся домножить на какое-то число и первое, и второе уравнение, чтобы можно было сложить. На 3 и на 2, чтобы получился одинаковый Y, который удобно будет сложить:
-45х + 10у = -40
45х + 27у = 225
Теперь складываем:
37у = 185 |:37
у = 5
Подставляю в любое уравнение. Я в первое (каждую пару пишем в фигурных скобках, я их пробелом разделяю)
-9х + 2у = -8
у = 5
-9х + 2*5 = -8
у=5
-9х + 10 = -8
у = 5
-9х = -18
у = 5
х = 2
у = 5
ответ: 2; 5
ответ: Нет.
Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.
Пусть искомый многочлен f(x) существует.
Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3).
Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.
Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).
То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней.