1. ((b³-1)/(b-1) + b) :( b²-1)/(b-1 )= ((b-1)*(b²+b+1)/(b-1) + b) :(( b-1)(b+1)/(b-1 )=
(b²+b+1+b) :(b+1)=(b+1)² :(b+1)=b+1; доказано.
2. (1+b)/(1-b² )* ((1+b³)/(1+b) - b) =((1+b)/((1-b)*(1+b)))* ((1+b)*(1-b+b²)/(1+b) - b) =
(1/(1-b)*)* ((1-b+b²- b) =1*(1-b)²/(1-b)= 1-b. доказано.
сократите дробь:
(a⁴-4)/(a³+2a)=(a²+2)(a²-2)/(a(a²+2))=(a²-2)/a
(x⁴-4x²+4)/(x³-2x)=(x²-2)²/(x*(x²-2))=(x²-2)/x
(x⁴-6x²+9)/(3x-x³)=(3-x²)²/(x*(3-x²))=(3-x²)/x
(x²-2x+4)/(x³+8)=(x²-2x+4)/((x+2)*(x²-2x+4))=1/(x+2)
1. ((b³-1)/(b-1) + b) :( b²-1)/(b-1 )= ((b-1)*(b²+b+1)/(b-1) + b) :(( b-1)(b+1)/(b-1 )=
(b²+b+1+b) :(b+1)=(b+1)² :(b+1)=b+1; доказано.
2. (1+b)/(1-b² )* ((1+b³)/(1+b) - b) =((1+b)/((1-b)*(1+b)))* ((1+b)*(1-b+b²)/(1+b) - b) =
(1/(1-b)*)* ((1-b+b²- b) =1*(1-b)²/(1-b)= 1-b. доказано.
сократите дробь:
(a⁴-4)/(a³+2a)=(a²+2)(a²-2)/(a(a²+2))=(a²-2)/a
(x⁴-4x²+4)/(x³-2x)=(x²-2)²/(x*(x²-2))=(x²-2)/x
(x⁴-6x²+9)/(3x-x³)=(3-x²)²/(x*(3-x²))=(3-x²)/x
(x²-2x+4)/(x³+8)=(x²-2x+4)/((x+2)*(x²-2x+4))=1/(x+2)