Борис страховал свою гражданскую ответственность два года. В течение первого года была сделана одна страховая выплата, после этого выплат не было. Какой класс будет присвоен Борису на начало третьего года страхования?
Пусть x = r1, y = r2, x^1/2 + y^1/2 = r3 - заданные в условии рациональные числа.
Тогда
x - y = (x^1/2 - y^1/2)(x^1/2 + y^1/2) - по формуле разложения для разности квадратов. Поскольку x - y = r1 - r2 = r4 - разность двух рациональных чисел есть число рациональное, и x^1/2 + y^1/2 = r3 - рациональное число (по условию), то x^1/2 - y^1/2 = r4/r3 = r5 - частное двух рациональных чисел есть также число рациональное.
Итак,
x^1/2 - y^1/2 = r5 - рациональное число (1)
x^1/2 + y^1/2 = r3 - рациональное число (по условию) (2)
Слкладывая обе части уравнений (1) и (2) получим, что х^1/2 = (r3 + r5)/2 - рациональное число (как сумма и частное рациональных чисел).
Аналогично, вычтя обе части уравнения (2) из обеих частей уравнения (1) получим, что y^1/2 = (r3 - r5)/2 - рациональное число (как разность и частное рациональных чисел).
Таким образом мы доказали, что числа х^1/2 и y^1/2 являются рациональными.
1)S2=2*2*2+2=10 (это сумма a1+a2)
S3=2*3*2+3=15 (это сумма а1+а2+а3)
2)Cистема:
а1+а2=10 а1+а1+d=10 2a1+d=10 I*(-3)
а1+а2+а3=15 a1+a1+d+a1+2d=15 3a1+3d=15
-3a1=-15
a1=5
d=0
ответ: а1=5,d=0
Пусть x = r1, y = r2, x^1/2 + y^1/2 = r3 - заданные в условии рациональные числа.
Тогда
x - y = (x^1/2 - y^1/2)(x^1/2 + y^1/2) - по формуле разложения для разности квадратов. Поскольку x - y = r1 - r2 = r4 - разность двух рациональных чисел есть число рациональное, и x^1/2 + y^1/2 = r3 - рациональное число (по условию), то x^1/2 - y^1/2 = r4/r3 = r5 - частное двух рациональных чисел есть также число рациональное.
Итак,
x^1/2 - y^1/2 = r5 - рациональное число (1)
x^1/2 + y^1/2 = r3 - рациональное число (по условию) (2)
Слкладывая обе части уравнений (1) и (2) получим, что х^1/2 = (r3 + r5)/2 - рациональное число (как сумма и частное рациональных чисел).
Аналогично, вычтя обе части уравнения (2) из обеих частей уравнения (1) получим, что y^1/2 = (r3 - r5)/2 - рациональное число (как разность и частное рациональных чисел).
Таким образом мы доказали, что числа х^1/2 и y^1/2 являются рациональными.