В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
IBRAGIM058
IBRAGIM058
26.08.2022 14:39 •  Алгебра

Борис страховал свою гражданскую ответственность два года. В течение первого года была сделана одна страховая выплата, после этого выплат не было. Какой класс будет присвоен Борису на начало третьего года страхования?

Показать ответ
Ответ:
nizyulkoelena
nizyulkoelena
26.07.2022 03:35

1)S2=2*2*2+2=10 (это сумма a1+a2)

   S3=2*3*2+3=15 (это сумма а1+а2+а3) 

2)Cистема:

     а1+а2=10            а1+а1+d=10                                2a1+d=10 I*(-3)     

     а1+а2+а3=15       a1+a1+d+a1+2d=15                     3a1+3d=15

                                                                                  

                                                                                -3a1=-15

                                                                                  a1=5

                                                                                  d=0

ответ: а1=5,d=0 

 

      

 

0,0(0 оценок)
Ответ:
ikonnikov1997
ikonnikov1997
24.06.2020 21:56

Пусть x = r1, y = r2, x^1/2 + y^1/2 = r3 - заданные в условии рациональные числа.

 

Тогда

 

x - y = (x^1/2 - y^1/2)(x^1/2 + y^1/2) - по формуле разложения для разности квадратов. Поскольку x - y = r1 - r2 = r4 - разность двух рациональных чисел есть число рациональное, и x^1/2 + y^1/2 = r3 - рациональное число (по условию), то x^1/2 - y^1/2 = r4/r3 = r5 - частное двух рациональных чисел есть также число рациональное.

 

Итак,

x^1/2 - y^1/2 = r5 - рациональное число (1)

x^1/2 + y^1/2 = r3 - рациональное число (по условию) (2)

 

Слкладывая обе части уравнений (1) и (2) получим, что х^1/2 = (r3 + r5)/2 - рациональное число (как сумма и частное рациональных чисел).

 

Аналогично, вычтя обе части уравнения (2) из обеих частей уравнения (1) получим, что y^1/2 = (r3 - r5)/2 - рациональное число (как разность и частное рациональных чисел).

 

Таким образом мы доказали, что числа х^1/2 и y^1/2 являются рациональными.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота