В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Macsum204
Macsum204
17.12.2022 22:18 •  Алгебра

БУДЬ ЛАСКА, ТЕРМІНОВО!! ІВ! З 8-11

Показать ответ
Ответ:
Данька0007
Данька0007
06.01.2023 02:29
Х не делится на 3, значит дает в остатке либо 1 либо 2
х=3k+1    или    х =3k+2
y не делится на 3, значит дает в остатке либо 1 либо 2
y= 3n +1    или    y =3n+2

тогда
а= (3k+1)⁴+(3n+1)⁴+1=(3k)⁴+4(3k)³+6(3k)³+4(3k)+1+(3n)⁴+4(3n)³+6(3n)³+4(3n)+1+1
Каждое слагаемое, которое  содержит 3k  или 3n  кратно 3,
1+1+1=3  тоже делится на 3
или
а= (3k+2)⁴+(3n+2)⁴+1=(3k)⁴+4(3k)³·2+6(3k)³·2²+4(3k)·2³+16+(3n)⁴+4(3n)³·2+6(3n)³·2²+4(3n)·2³+16+1
Каждое слагаемое, которое содержит 3k  или 3n   кратно 3,
16+16+1=33  тоже делится на 3
или
а= (3k+1)⁴+(3n+2)⁴+1=(3k)⁴+4(3k)³+6(3k)³+4(3k)+1+(3n)⁴+4(3n)³·2+6(3n)³·2²+4(3n)·2³+16+1
Каждое слагаемое, которое  содержит 3k  или 3n кратно 3,
1+16+1=18 тоже делится на 3
или
а= (3k+2)⁴+(3n+1)⁴+1=(3k)⁴+4(3k)³·2+6(3k)³·2²+4(3k)·2³+16+(3n)⁴+4(3n)³+6(3n)³+4(3n)+1+1
Каждое слагаемое , которое содержит 3k  или 3n   кратно 3,
16+1+1=3 и тоже делится на 3
0,0(0 оценок)
Ответ:
elena1alekseevna
elena1alekseevna
25.07.2021 00:39
Множество целых чисел:
\mathbb Z=\{...-1,0,1...\}
Т.е. все отрицательные и натуральные числа.

Множества называются равными если:
A \subseteq B и B\subseteq A

Пусть:
A=\{x|x=4n-1,n\in \mathbb Z\}
B=\{x|x=4m+3,m\in \mathbb Z\}

Так как x=x
То:
4n-1=4m+3
Т.е. либо n зависит от m:
n= m+1
Либо m от n:
m=n-1

Теперь, если A\nsubseteq B то,значит, есть такой элемент a\in A так что a\notin B.
Т.е. выполняется:
a=4n-1 \Rightarrow n= \frac{a+1}{4}
Значит:
\frac{a+1}{4} \neq m+1

Но мы знаем что для каждого n и m выполняется n=m+1. Значит противоречие и наше предположение о том что А не является подмножеством В не верно.
Т.е. 
A\subseteq B

Теперь, если предположить что B\nsubseteq A, то значит есть такой элемент b\in B так что: b\notin A

Т.е. выполняется:
b=4m+3 \Rightarrow m= \frac{b-3}{4}

Значит :
\frac{b-3}{4} \neq 4n-1

Но этого не может быть. Значит противоречие.
B\subseteq A

Отсюда следует:
A=B
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота