Х не делится на 3, значит дает в остатке либо 1 либо 2 х=3k+1 или х =3k+2 y не делится на 3, значит дает в остатке либо 1 либо 2 y= 3n +1 или y =3n+2
тогда а= (3k+1)⁴+(3n+1)⁴+1=(3k)⁴+4(3k)³+6(3k)³+4(3k)+1+(3n)⁴+4(3n)³+6(3n)³+4(3n)+1+1 Каждое слагаемое, которое содержит 3k или 3n кратно 3, 1+1+1=3 тоже делится на 3 или а= (3k+2)⁴+(3n+2)⁴+1=(3k)⁴+4(3k)³·2+6(3k)³·2²+4(3k)·2³+16+(3n)⁴+4(3n)³·2+6(3n)³·2²+4(3n)·2³+16+1 Каждое слагаемое, которое содержит 3k или 3n кратно 3, 16+16+1=33 тоже делится на 3 или а= (3k+1)⁴+(3n+2)⁴+1=(3k)⁴+4(3k)³+6(3k)³+4(3k)+1+(3n)⁴+4(3n)³·2+6(3n)³·2²+4(3n)·2³+16+1 Каждое слагаемое, которое содержит 3k или 3n кратно 3, 1+16+1=18 тоже делится на 3 или а= (3k+2)⁴+(3n+1)⁴+1=(3k)⁴+4(3k)³·2+6(3k)³·2²+4(3k)·2³+16+(3n)⁴+4(3n)³+6(3n)³+4(3n)+1+1 Каждое слагаемое , которое содержит 3k или 3n кратно 3, 16+1+1=3 и тоже делится на 3
х=3k+1 или х =3k+2
y не делится на 3, значит дает в остатке либо 1 либо 2
y= 3n +1 или y =3n+2
тогда
а= (3k+1)⁴+(3n+1)⁴+1=(3k)⁴+4(3k)³+6(3k)³+4(3k)+1+(3n)⁴+4(3n)³+6(3n)³+4(3n)+1+1
Каждое слагаемое, которое содержит 3k или 3n кратно 3,
1+1+1=3 тоже делится на 3
или
а= (3k+2)⁴+(3n+2)⁴+1=(3k)⁴+4(3k)³·2+6(3k)³·2²+4(3k)·2³+16+(3n)⁴+4(3n)³·2+6(3n)³·2²+4(3n)·2³+16+1
Каждое слагаемое, которое содержит 3k или 3n кратно 3,
16+16+1=33 тоже делится на 3
или
а= (3k+1)⁴+(3n+2)⁴+1=(3k)⁴+4(3k)³+6(3k)³+4(3k)+1+(3n)⁴+4(3n)³·2+6(3n)³·2²+4(3n)·2³+16+1
Каждое слагаемое, которое содержит 3k или 3n кратно 3,
1+16+1=18 тоже делится на 3
или
а= (3k+2)⁴+(3n+1)⁴+1=(3k)⁴+4(3k)³·2+6(3k)³·2²+4(3k)·2³+16+(3n)⁴+4(3n)³+6(3n)³+4(3n)+1+1
Каждое слагаемое , которое содержит 3k или 3n кратно 3,
16+1+1=3 и тоже делится на 3
Т.е. все отрицательные и натуральные числа.
Множества называются равными если:
и
Пусть:
Так как
То:
Т.е. либо n зависит от m:
Либо m от n:
Теперь, если то,значит, есть такой элемент так что .
Т.е. выполняется:
Значит:
Но мы знаем что для каждого n и m выполняется n=m+1. Значит противоречие и наше предположение о том что А не является подмножеством В не верно.
Т.е.
Теперь, если предположить что , то значит есть такой элемент так что:
Т.е. выполняется:
Значит :
Но этого не может быть. Значит противоречие.
Отсюда следует: