Сначала найдем сумму квадратов корней уравнения x^2 - 4x + 1 = 0 D/4 = 4 - 1 = 3 x1 = 2 - √3; x2 = 2 + √3 x1^2 + x2^2 = (2 - √3)(2 + √3) = 4 - 3 = 1 Получили задачу: Найти такие а, при которых множество решений неравенства содержит число 1. x(x - 6) <= (a + 3)(|x-3| - 3) 1) Если x < 3, то |x - 3| = 3 - x x(x - 6) <= (a + 3)(3 - x - 3) = (a + 3)(-x) Если x < 0, то решение не содержит число 1. Если x ∈ (0, 3), то решение может содержать число 1. При этом x > 0, сокращаем уравнение на х, знак неравенства остается. x - 6 <= -a - 3 x <= 3 - a Если решение содержит число 1, то 3 - a >= 1 a <= 2
2) Если x > 3, то решение не содержит числа 1. ответ: 2
1) Неопределённость 0/0 раскрываем умножением числителя и знаменателя на выражение, сопряжённое знаменателю, т.е. на
В знаменателе разложение разности квадратом, используем это:
Сокращаем:
2) Неопределённость (∞-∞) раскрываем, приводя к общему знаменателю:
Сокращаем:
3) Неопределённость 0/0 раскрываем по первому замечательному пределу, вернее по одному из следствий из него, а именно:
Знаменатель разложили на множители, затем по свойству предел произведения равен произведению пределов, разбили на 2 предела:
Первый предел равен минус единице, второй приводим к первому замечательному пределу домножением на 5 числителя и знаменателя.
4) Неопределённость 1 в степени ∞ раскрывается с второго замечательного предела. Но сначала путём преобразований приведём к виду, когда его можно будет применить. В числителе добавили и вычли 1, затем сгруппировали и разделили.
Потом поменяли знак второго слагаемого
Сделаем замену t=1/(x-2), при этом t →0 и
Отделим целочисленную степень (6):
Разбили на произведение пределов, первый из которых равен 1, второй по второму замечательному пределу:
Сначала можно вычислить предел, а затем возвести его в степень:
x^2 - 4x + 1 = 0
D/4 = 4 - 1 = 3
x1 = 2 - √3; x2 = 2 + √3
x1^2 + x2^2 = (2 - √3)(2 + √3) = 4 - 3 = 1
Получили задачу: Найти такие а, при которых множество решений неравенства содержит число 1.
x(x - 6) <= (a + 3)(|x-3| - 3)
1) Если x < 3, то |x - 3| = 3 - x
x(x - 6) <= (a + 3)(3 - x - 3) = (a + 3)(-x)
Если x < 0, то решение не содержит число 1.
Если x ∈ (0, 3), то решение может содержать число 1.
При этом x > 0, сокращаем уравнение на х, знак неравенства остается.
x - 6 <= -a - 3
x <= 3 - a
Если решение содержит число 1, то
3 - a >= 1
a <= 2
2) Если x > 3, то решение не содержит числа 1.
ответ: 2
В знаменателе разложение разности квадратом, используем это:
Сокращаем:
2) Неопределённость (∞-∞) раскрываем, приводя к общему знаменателю:
Сокращаем:
3) Неопределённость 0/0 раскрываем по первому замечательному пределу, вернее по одному из следствий из него, а именно:
Знаменатель разложили на множители, затем по свойству предел произведения равен произведению пределов, разбили на 2 предела:
Первый предел равен минус единице, второй приводим к первому замечательному пределу домножением на 5 числителя и знаменателя.
4) Неопределённость 1 в степени ∞ раскрывается с второго замечательного предела. Но сначала путём преобразований приведём к виду, когда его можно будет применить.
В числителе добавили и вычли 1, затем сгруппировали и разделили.
Потом поменяли знак второго слагаемого
Сделаем замену t=1/(x-2), при этом t →0 и
Отделим целочисленную степень (6):
Разбили на произведение пределов, первый из которых равен 1, второй по второму замечательному пределу:
Сначала можно вычислить предел, а затем возвести его в степень: